Skip to main content
Log in

Self-healable gels in electrochemical energy storage devices

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the green energy and carbon-neutral technology, electrochemical energy storage devices have received continuously increasing attention recently. However, due to the unavoidable volume expansion/shrinkage of key materials or irreversible mechanical damages during application, the stability of energy storage and delivery as well as the lifetime of these devices are severely shortened, leading to serious performance degradation or even safety issues. Therefore, the utilization of self-healable gels into electrochemical energy storage devices, such as electrodes, binders, and electrolytes, is proven as an effective method to realize long-term stable operation of these devices via the self-repairing of mechanical and electrochemical characteristics. Herein, this review first summarizes the feature and fabrication of different gels, paying special attention to hydrogels, organohydrogels, and ionogels. Then, basic concepts and figure of merit of self-healable gels are analyzed with a detailed discussion at the healing mechanisms, from reversible dynamic bonds to physical molecular diffusion, and to external healing trigger. Then we introduce all the important parts of electrochemical energy storage devices, which could be replaced by healable gels to enhance the durability, including electrodes, binders, and electrolytes. Finally, the critical challenges and future perspectives regarding the future development of healable gels based high-performance electrochemical energy storage devices or electronics are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, M. J.; Han, J.; Lee, K.; Lee, Y. J.; Kim, B. G.; Jung, K. N.; Kim, B. J.; Lee, S. W. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 2022, 601, 217–222.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Han, D. L.; Cui, C. J.; Zhang, K. Y.; Wang, Z. X.; Gao, J. C.; Guo, Y.; Zhang, Z. C.; Wu, S. C.; Yin, L. C.; Weng, Z. et al. A nonflammable hydrous organic electrolyte for sustainable zinc batteries. Nat. Sustain. 2022, 5, 205–213.

    Article  Google Scholar 

  3. Ren, Y. M.; Yu, C. B.; Chen, Z. H.; Xu, Y. X. Two-dimensional polymer nanosheets for efficient energy storage and conversion. Nano Res. 2021, 14, 2023–2036.

    Article  CAS  Google Scholar 

  4. Hua, M. T.; Wu, S. W.; Jin, Y.; Zhao, Y. S.; Yao, B. W.; He, X. M. Tough-hydrogel reinforced low-tortuosity conductive networks for stretchable and high-performance supercapacitors. Adv. Mater. 2021, 33, 2100983.

    Article  CAS  Google Scholar 

  5. Yao, H. R.; Zheng, L. T.; Xin, S.; Guo, Y. G. Air-stability of sodium-based layered-oxide cathode materials. Sci. China Chem. 2022, 65, 1076–1087.

    Article  CAS  Google Scholar 

  6. Chi, X. W.; Zhang, Y.; Hao, F.; Kmiec, S.; Dong, H.; Xu, R.; Zhao, K. J.; Ai, Q.; Terlier, T.; Wang, L. et al. An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries. Nat. Commun. 2022, 13, 2854.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun, F. Y.; Li, Z. X.; Gao, S. L.; He, Y. Y.; Luo, J. C.; Zhao, X.; Yang, D. D.; Gao, T.; Yang, H. B.; Cao, P. F. Self-healable, highly stretchable, ionic conducting polymers as efficient protecting layers for stable lithium-metal electrodes. ACS Appl. Mater. Interfaces 2022, 14, 26014–26023.

    Article  CAS  PubMed  Google Scholar 

  8. Liu, X. J.; Xu, Z. X.; Iqbal, A.; Chen, M.; Ali, N.; Low, C.; Qi, R. R.; Zai, J. T.; Qian, X. F. Chemical coupled PEDOT:PSS/Si electrode: Suppressed electrolyte consumption enables long-term stability. Nano-Micro Lett. 2021, 13, 54.

    Article  ADS  Google Scholar 

  9. Hu, L. L.; Jin, M. H.; Zhang, Z.; Chen, H. X.; Boorboor Ajdari, F.; Song, J. X. Interface-adaptive binder enabled by supramolecular interactions for high-capacity Si/C composite anodes in lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2111560.

    Article  CAS  Google Scholar 

  10. Zhang, Y. Y.; Yi, L. L.; Zhang, J. P.; Wang, X.; Hu, X. C.; Wei, W.; Wang, H. Advances in flexible lithium metal batteries. Sci. China Mater. 2022, 65, 2035–2059.

    Article  Google Scholar 

  11. Xiao, X.; Zheng, Z. Y.; Zhong, X. W.; Gao, R. H.; Piao, Z. H.; Jiao, M. L.; Zhou, G. M. Rational design of flexible Zn-based batteries for wearable electronic devices. ACS Nano 2023, 17, 1764–1802.

    Article  CAS  PubMed  Google Scholar 

  12. Li, X. L.; Lou, D. Y.; Wang, H. Y.; Sun, X. Y.; Li, J.; Liu, Y. N. Flexible supercapacitor based on organohydrogel electrolyte with long-term anti-freezing and anti-drying property. Adv. Funct. Mater. 2020, 30, 2007291.

    Article  CAS  Google Scholar 

  13. Li, C. W.; Hou, J. C.; Zhang, J. Y.; Li, X. Y.; Jiang, S. Q.; Zhang, G. Q.; Yao, Z. J.; Liu, T. C.; Shen, S. H.; Liu, Z. Q. et al. Heterostructured NiS2@SnS2 hollow spheres as superior high-rate and durable anodes for sodium-ion batteries. Sci. China Chem. 2022, 65, 1420–1432.

    Article  CAS  Google Scholar 

  14. Wang, H.; Wang, P. P.; Feng, Y. P.; Liu, J.; Wang, J. Q.; Hu, M. M.; Wei, J.; Huang, Y. Recent advances on self-healing materials and batteries. ChemElectroChem 2019, 6, 1605–1622.

    Article  CAS  Google Scholar 

  15. Xia, H. R.; Lv, Z. S.; Zhang, W.; Wei, J. Q.; Liu, L.; Cao, S. K.; Zhu, Z. Q.; Tang, Y. X.; Chen, X. D. Hygroscopic chemistry enables fire-tolerant supercapacitors with a self-healable “solute-in-air” electrolyte. Adv. Mater. 2022, 34, 2109857.

    Article  CAS  Google Scholar 

  16. Li, H. J.; Gao, G. R.; Xu, Z. Y.; Tang, D. N.; Chen, T. Recent progress in bionic skin based on conductive polymer gels. Macromol. Rapid Commun. 2021, 42, 2100480.

    Article  CAS  Google Scholar 

  17. Zhao, Y. F.; Fu, X. F.; Liu, B. H.; Sun, J. T.; Zhuang, Z. H.; Yang, P. H.; Zhong, J. W.; Liu, K. Ultra-stretchable hydrogel thermocouples for intelligent wearables. Sci. China Mater. 2023, 66, 1934–1940.

    Article  Google Scholar 

  18. Dechiraju, H.; Jia, M. P.; Luo, L.; Rolandi, M. Ion-conducting hydrogels and their applications in bioelectronics. Adv. Sustain. Syst. 2022, 6, 2100173.

    Article  CAS  Google Scholar 

  19. Hsieh, J. C.; Alawieh, H.; Li, Y.; Iwane, F.; Zhao, L. R.; Anderson, R.; Abdullah, S. I.; Kevin Tang, K. W.; Wang, W. L.; Pyatnitskiy, I. et al. A highly stable electrode with low electrode-skin impedance for wearable brain-computer interface. Biosens. Bioelectron. 2022, 218, 114756.

    Article  CAS  PubMed  Google Scholar 

  20. Dai, J.; Qin, H. L.; Dong, W. X.; Cong, H. P.; Yu, S. H. Autonomous self-healing of highly stretchable supercapacitors at all climates. Nano Lett. 2022, 22, 6444–6453.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Yang, P. H.; Yang, J. L.; Liu, K.; Fan, H. J. Hydrogels enable future smart batteries. ACS Nano 2022, 16, 15528–15536.

    Article  CAS  PubMed  Google Scholar 

  22. Bai, S. Y.; Kim, B.; Kim, C.; Tamwattana, O.; Park, H.; Kim, J.; Lee, D.; Kang, K. Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nat. Nanotechnol. 2021, 16, 77–84.

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Yan, W.; Wei, J.; Chen, T.; Duan, L.; Wang, L.; Xue, X. L.; Chen, R. P.; Kong, W. H.; Lin, H. N.; Li, C. H. et al. Superstretchable, thermostable and ultrahigh-loading lithium-sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy 2021, 80, 105510.

    Article  CAS  Google Scholar 

  24. Lee, D.; Kim, H. I.; Kim, W. Y.; Cho, S. K.; Baek, K.; Jeong, K.; Ahn, D. B.; Park, S.; Kang, S. J.; Lee, S. Y. Water-repellent ionic liquid skinny gels customized for aqueous Zn-ion battery anodes. Adv. Funct. Mater. 2021, 31, 2103850.

    Article  CAS  Google Scholar 

  25. Ma, W. T.; Wan, S.; Cui, X. R.; Hou, G. L.; Xiao, Y.; Rong, J. F.; Chen, S. M. Exploration and application of self-healing strategies in lithium batteries. Adv. Funct. Mater. 2023, 33, 2212821.

    Article  CAS  Google Scholar 

  26. Ge, J.; Zhu, M. S.; Eisner, E.; Yin, Y.; Dong, H. Y.; Karnaushenko, D. D.; Karnaushenko, D.; Zhu, F.; Ma, L. B.; Schmidt, O. G. Imperceptible supercapacitors with high area-specific capacitance. Small 2021, 17, 2101704.

    Article  CAS  Google Scholar 

  27. Niu, J. P.; Chen, Z.; Zhao, J. W.; Cui, G. L. Stimulus-responsive polymers for safe batteries and smart electronics. Sci. China Mater. 2022, 65, 2060–2071.

    Article  CAS  Google Scholar 

  28. Zhao, C. Z.; Duan, H.; Huang, J. Q.; Zhang, J.; Zhang, Q.; Guo, Y. G.; Wan, L. J. Designing solid-state interfaces on lithium-metal anodes: A review. Sci. China Chem. 2019, 62, 1286–1299.

    Article  CAS  Google Scholar 

  29. Ma, C.; Cui, W. F.; Liu, X. Z.; Ding, Y.; Wang, Y. G. In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. InfoMat 2022, 4, e12232.

    Article  CAS  Google Scholar 

  30. Davino, S.; Callegari, D.; Pasini, D.; Thomas, M.; Nicotera, I.; Bonizzoni, S.; Mustarelli, P.; Quartarone, E. Cross-linked gel electrolytes with self-healing functionalities for smart lithium batteries. ACS Appl. Mater. Interfaces 2022, 14, 51941–51953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou, X.; Zhao, X. H.; Wang, Y. Y.; Wang, P. Y.; Jiang, X. Y.; Song, Z. H.; Ding, J. J.; Liu, G. J.; Li, X.; Sun, W. Z. et al. Gel-based strain/pressure sensors for underwater sensing: Sensing mechanisms, design strategies and applications. Compos. Part B: Eng. 2023, 255, 110631.

    Article  Google Scholar 

  32. Yu, C. J.; Yue, Z. W.; Zhang, H.; Shi, M. Y.; Yao, M. M.; Yu, Q. Y.; Liu, M.; Guo, B. Y.; Zhang, H. T.; Tian, L. Q. et al. Ultra-histocompatible and electrophysiological-adapted PEDOT-based hydrogels designed for cardiac repair. Adv. Funct. Mater. 2023, 33, 2211023.

    Article  CAS  Google Scholar 

  33. Zhang, M. W.; Yu, R.; Tao, X. L.; He, Y. Y.; Li, X. P.; Tian, F.; Chen, X. Y.; Huang, W. Mechanically robust and highly conductive ionogels for soft ionotronics. Adv. Funct. Mater. 2023, 33, 2208083.

    Article  CAS  Google Scholar 

  34. Xu, M. D.; Hua, L. Q.; Gong, L. H.; Lu, J. L.; Wang, J. H.; Zhao, C. Z. Lighted up by hydrogen-bonding: Luminescence behavior and applications of AIEgen-doped interpenetrating network hydrogel. Sci. China Chem. 2021, 64, 1770–1777.

    Article  CAS  Google Scholar 

  35. Lou, J. Z.; Mooney, D. J. Chemical strategies to engineer hydrogels for cell culture. Nat. Rev. Chem. 2022, 6, 726–744.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, Y.; Sun, H.; Zhang, B.; Hu, L. L.; Xu, L.; Hao, J. C. Hydrogels totally from inorganic nanosheets and water with mechanical robustness, self-healing, controlled lubrication and anticorrosion. Nano Res. 2023, 16, 1533–1544.

    Article  ADS  CAS  Google Scholar 

  37. Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yuk, H.; Wu, J. J.; Zhao, X. H. Hydrogel interfaces for merging humans and machines. Nat. Rev. Mater. 2022, 7, 935–952.

    Article  ADS  CAS  Google Scholar 

  39. Chen, Y.; Li, J.; Lu, J. W.; Ding, M.; Chen, Y. Synthesis and properties of poly(vinyl alcohol) hydrogels with high strength and toughness. Polym. Test. 2022, 108, 107516.

    Article  CAS  Google Scholar 

  40. Miao, Z. Y.; Song, Y.; Dong, Y. J.; Ge, D.; Shui, J. X.; He, X.; Yu, H. Y. Intrinsic conductive cellulose nanofiber induce room-temperature reversible and robust polyvinyl alcohol hydrogel for multifunctional self-healable biosensors. Nano Res. 2023, 16, 3156–3167.

    Article  ADS  CAS  Google Scholar 

  41. Lu, B. L.; Lin, F. C.; Jiang, X.; Cheng, J. J.; Lu, Q. L.; Song, J. B.; Chen, C.; Huang, B. One-pot assembly of microfibrillated cellulose reinforced PVA-borax hydrogels with self-healing and pH-responsive properties. ACS Sustain. Chem. Eng. 2017, 5, 948–956.

    Article  CAS  Google Scholar 

  42. Yuk, H.; Varela, C. E.; Nabzdyk, C. S.; Mao, X. Y.; Padera, R. F.; Roche, E. T.; Zhao, X. H. Dry double-sided tape for adhesion of wet tissues and devices. Nature 2019, 575, 169–174.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Chen, G. Q.; Hu, O. D.; Lu, J.; Gu, J. F.; Chen, K.; Huang, J. R.; Hou, L. X.; Jiang, X. C. Highly flexible and adhesive poly(vinyl alcohol)/poly(acrylic amide-co-2-acrylamido-2-methylpropane sulfonic acid)/glycerin hydrogel electrolyte for stretchable and resumable supercapacitor. Chem. Eng. J. 2021, 425, 131505.

    Article  CAS  Google Scholar 

  44. Sui, X. J.; Guo, H. S.; Cai, C. C.; Li, Q. S.; Wen, C. Y.; Zhang, X. Y.; Wang, X. D.; Yang, J.; Zhang, L. Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities. Chem. Eng. J. 2021, 419, 129478.

    Article  CAS  Google Scholar 

  45. Yang, C. H.; Yin, T. H.; Suo, Z. G. Polyacrylamide hydrogels. I. Network imperfection. J. Mech. Phys. Solids 2019, 131, 43–55.

    Article  ADS  CAS  Google Scholar 

  46. Xu, S. J.; Sun, Z. H.; Sun, C. G.; Li, F.; Chen, K.; Zhang, Z. H.; Hou, G. J.; Cheng, H. M.; Li, F. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 2020, 30, 2007172.

    Article  CAS  Google Scholar 

  47. Li, W. Y.; Pang, Y.; Liu, J. Y.; Liu, G. H.; Wang, Y. G.; Xia, Y. Y. A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv. 2017, 7, 23494–23501.

    Article  ADS  CAS  Google Scholar 

  48. Hu, L. X.; Chee, P. L.; Sugiarto, S.; Yu, Y.; Shi, C. Q.; Yan, R.; Yao, Z. Q.; Shi, X. W.; Zhi, J. C.; Kai, D. et al. Hydrogel-based flexible electronics. Adv. Mater. 2023, 35, 2205326.

    Article  CAS  Google Scholar 

  49. Li, G.; Li, C. L.; Li, G. D.; Yu, D. H.; Song, Z. P.; Wang, H. L.; Liu, X. N.; Liu, H.; Liu, W. X. Development of conductive hydrogels for fabricating flexible strain sensors. Small 2022, 18, 2101518.

    Article  CAS  Google Scholar 

  50. Li, J. Y.; Ding, Q. L.; Wang, H.; Wu, Z. X.; Gui, X. C.; Li, C. W.; Hu, N.; Tao, K.; Wu, J. Engineering smart composite hydrogels for wearable disease monitoring. Nano-Micro Lett. 2023, 15, 105.

    Article  ADS  CAS  Google Scholar 

  51. Zhao, W.; Gan, D. L.; Qu, X. Y.; Liu, J. Y.; Liu, Y. L.; Wang, Q.; Wang, W. J.; Sun, C. C.; Dong, X. C. Bioinspired wet-resistant organogel for highly sensitive mechanical perception. Sci. China Mater. 2022, 65, 2262–2273.

    Article  CAS  Google Scholar 

  52. Ding, Q. L.; Wu, Z. X.; Tao, K.; Wei, Y. M.; Wang, W. Y.; Yang, B. R.; Xie, X.; Wu, J. Environment tolerant, adaptable and stretchable organohydrogels: Preparation, optimization, and applications. Mater. Horiz. 2022, 9, 1356–1386.

    Article  CAS  PubMed  Google Scholar 

  53. Yu, Y. H.; Yi, P.; Xu, W. B.; Sun, X.; Deng, G.; Liu, X. F.; Shui, J. L.; Yu, R. H. Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 2022, 14, 77.

    Article  ADS  CAS  Google Scholar 

  54. Cheng, Y. P.; Zang, J. J.; Zhao, X.; Wang, H.; Hu, Y. C. Nanocellulose-enhanced organohydrogel with high-strength, conductivity, and anti-freezing properties for wearable strain sensors. Carbohydr. Polym. 2022, 277, 118872.

    Article  CAS  PubMed  Google Scholar 

  55. Chen, F.; Zhou, D.; Wang, J. H.; Li, T. Z.; Zhou, X. H.; Gan, T. S.; Handschuh-Wang, S.; Zhou, X. C. Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement. Angew. Chem., Int. Ed. 2018, 57, 6568–6571.

    Article  CAS  Google Scholar 

  56. Luo, J. B.; Xing, Y. Z.; Sun, C. Y.; Fan, L. Q.; Shi, H. B.; Zhang, Q. H.; Li, Y. G.; Hou, C. Y.; Wang, H. Z. A bio-adhesive ion-conducting organohydrogel as a high-performance non-invasive interface for bioelectronics. Chem. Eng. J. 2022, 427, 130886.

    Article  CAS  Google Scholar 

  57. Gao, H. N.; Zhao, Z. G.; Cai, Y. D.; Zhou, J. J.; Hua, W. D.; Chen, L.; Wang, L.; Zhang, J. Q.; Han, D.; Liu, M. J. et al. Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range. Nat. Commun. 2017, 8, 15911.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, J.; Wu, Z. X.; Lu, X.; Han, S. J.; Yang, B. R.; Gui, X. C.; Tao, K.; Miao, J. M.; Liu, C. Ultrastretchable and stable strain sensors based on antifreezing and self-healing ionic organohydrogels for human motion monitoring. ACS Appl. Mater. Interfaces 2019, 11, 9405–9414.

    Article  CAS  PubMed  Google Scholar 

  59. Liang, Y. N.; Wu, Z. X.; Wei, Y. M.; Ding, Q. L.; Zilberman, M.; Tao, K.; Xie, X.; Wu, J. Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 2022, 14, 52.

    Article  ADS  CAS  Google Scholar 

  60. Fang, L. Y.; Zhang, J. C.; Wang, W. J.; Zhang, Y. L.; Chen, F.; Zhou, J. H.; Chen, F. B.; Li, R.; Zhou, X. C.; Xie, Z. Stretchable, healable, and degradable soft ionic microdevices based on multifunctional soaking-toughened dual-dynamic-network organohydrogel electrolytes. ACS Appl. Mater. Interfaces 2020, 12, 56393–56402.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, L.; Jiang, D. W.; Dong, T. H.; Das, R.; Pan, D.; Sun, C. Y.; Wu, Z. J.; Zhang, Q. B.; Liu, C. T.; Guo, Z. H. Overview of ionogels in flexible electronics. Chem. Record 2020, 20, 948–967.

    Article  CAS  Google Scholar 

  62. Luo, Z. H.; Li, W. J.; Yan, J. P.; Sun, J. Roles of ionic liquids in adjusting nature of ionogels: A mini review. Adv. Funct. Mater. 2022, 32, 2203988.

    Article  CAS  Google Scholar 

  63. Liao, W. Q.; Liu, X. K.; Li, Y. Q.; Xu, X.; Jiang, J. X.; Lu, S. R.; Bao, D. Q.; Wen, Z.; Sun, X. H. Transparent, stretchable, temperature-stable and self-healing ionogel-based triboelectric nanogenerator for biomechanical energy collection. Nano Res. 2022, 15, 2060–2068.

    Article  ADS  CAS  Google Scholar 

  64. Zhao, G. R.; Lv, B.; Wang, H. G.; Yang, B. P.; Li, Z. Y.; Ren, J. F.; Gui, G.; Liu, W. G.; Yang, S. R.; Li, L. L. Ionogel-based flexible stress and strain sensors. Int. J. Smart Nano Mater. 2021, 12, 307–336.

    Article  ADS  Google Scholar 

  65. Wang, Y. F.; Liu, Y.; Hu, N.; Shi, P. R.; Zhang, C.; Liu, T. X. Highly stretchable and self-healable ionogels with multiple sensitivity towards compression, strain and moisture for skin-inspired ionic sensors. Sci. China Mater. 2022, 65, 2252–2261.

    Article  CAS  Google Scholar 

  66. Poh, W. C.; Eh, A. L. S.; Wu, W. T.; Guo, X. Y.; Lee, P. S. Rapidly photocurable solid-state poly(ionic liquid) ionogels for thermally robust and flexible electrochromic devices. Adv. Mater. 2022, 34, 2206952.

    Article  CAS  Google Scholar 

  67. Wang, Z. H.; Zhang, J. X.; Liu, J. H.; Hao, S.; Song, H. Z.; Zhang, J. 3D printable, highly stretchable, superior stable ionogels based on poly(ionic liquid) with hyperbranched polymers as macro-cross-linkers for high-performance strain sensors. ACS Appl. Mater. Interfaces 2021, 13, 5614–5624.

    Article  CAS  PubMed  Google Scholar 

  68. Hao, S.; Li, T. C.; Yang, X. M.; Song, H. Z. Ultrastretchable, adhesive, fast self-healable, and three-dimensional printable photoluminescent ionic skin based on hybrid network ionogels. ACS Appl. Mater. Interfaces 2022, 14, 2029–2037.

    Article  CAS  PubMed  Google Scholar 

  69. Xiang, S. F.; Chen, S. S.; Yao, M. T.; Zheng, F.; Lu, Q. H. Strain sensor based on a flexible polyimide ionogel for application in high-and low-temperature environments. J. Mater. Chem. C 2019, 7, 9625–9632.

    Article  CAS  Google Scholar 

  70. Ren, Y. Y.; Guo, J. N.; Liu, Z. Y.; Sun, Z.; Wu, Y. Q.; Liu, L. L.; Yan, F. Ionic liquid-based click-ionogels. Sci. Adv. 2019, 5, eaax0648.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu, R.; Li, Z. L.; Pan, G. Y.; Guo, B. L. Antibacterial conductive self-healable supramolecular hydrogel dressing for infected motional wound healing. Sci. China Chem. 2022, 65, 2238–2251.

    Article  CAS  Google Scholar 

  72. Grosjean, M.; Gangolphe, L.; Nottelet, B. Degradable self-healable networks for use in biomedical applications. Adv. Funct. Mater. 2023, 33, 2205315.

    Article  CAS  Google Scholar 

  73. Kong, B.; Liu, R.; Cheng, Y.; Cai, X. D.; Liu, J. Y.; Zhang, D. G.; Tan, H.; Zhao, Y. J. Natural biopolymers derived hydrogels with injectable, self-healing, and tissue adhesive abilities for wound healing. Nano Res. 2023, 16, 2798–2807.

    Article  ADS  CAS  Google Scholar 

  74. Tan, Y. J.; Wu, J. K.; Li, H. Y.; Tee, B. C. K. Self-healing electronic materials for a smart and sustainable future. ACS Appl. Mater. Interfaces 2018, 10, 15331–15345.

    Article  CAS  PubMed  Google Scholar 

  75. Mezzomo, L.; Ferrara, C.; Brugnetti, G.; Callegari, D.; Quartarone, E.; Mustarelli, P.; Ruffo, R. Exploiting self-healing in lithium batteries: Strategies for next-generation energy storage devices. Adv. Energy Mater. 2020, 10, 2002815.

    Article  CAS  Google Scholar 

  76. Khatib, M.; Zohar, O.; Haick, H. Self-healing soft sensors: From material design to implementation. Adv. Mater. 2021, 33, 2004190.

    Article  CAS  Google Scholar 

  77. Chang, T.; Panhwar, F.; Zhao, G. Flourishing self-healing surface materials: Recent progresses and challenges. Adv. Mater. Interfaces 2020, 7, 1901959.

    Article  Google Scholar 

  78. Gai, Y. S.; Li, H.; Li, Z. Self-healing functional electronic devices. Small 2021, 17, 2101383.

    Article  CAS  Google Scholar 

  79. Wu, Z. X.; Yang, X.; Wu, J. Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 2021, 13, 2128–2144.

    Article  CAS  PubMed  Google Scholar 

  80. Hui, Y.; Wen, Z. B.; Pilate, F.; Xie, H.; Fan, C. J.; Du, L.; Liu, D.; Yang, K. K.; Wang, Y. Z. A facile strategy to fabricate highly-stretchable self-healing poly(vinyl alcohol) hybrid hydrogels based on metal-ligand interactions and hydrogen bonding. Polym. Chem. 2016, 7, 7269–7277.

    Article  CAS  Google Scholar 

  81. Deng, Z. X.; Wang, H.; Ma, P. X.; Guo, B. L. Self-healing conductive hydrogels: Preparation, properties and applications. Nanoscale 2020, 12, 1224–1246.

    Article  CAS  PubMed  Google Scholar 

  82. Xu, Y.; Cui, M. Y.; Patsis, P. A.; Günther, M.; Yang, X. G.; Eckert, K.; Zhang, Y. X. Reversibly assembled electroconductive hydrogel via a host–guest interaction for 3D cell culture. ACS Appl. Mater. Interfaces 2019, 11, 7715–7724.

    Article  CAS  PubMed  Google Scholar 

  83. Chen, J. S.; Liu, J. F.; Thundat, T.; Zeng, H. B. Polypyrrole-doped conductive supramolecular elastomer with stretchability, rapid self-healing, and adhesive property for flexible electronic sensors. ACS Appl. Mater. Interfaces 2019, 11, 18720–18729.

    Article  CAS  PubMed  Google Scholar 

  84. Darabi, M. A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y. Q.; Chang, Q.; Jiang, J. Z.; Cai, J.; Wang, Q.; Luo, G. X.; Xing, M. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater. 2017, 29, 1700533.

    Article  Google Scholar 

  85. Talebian, S.; Mehrali, M.; Taebnia, N.; Pennisi, C. P.; Kadumudi, F. B.; Foroughi, J.; Hasany, M.; Nikkhah, M.; Akbari, M.; Orive, G. et al. Self-healing hydrogels: The next paradigm shift in tissue engineering. Adv. Sci. 2019, 6, 1801664.

    Article  Google Scholar 

  86. Xu, Y.; Patsis, P. A.; Hauser, S.; Voigt, D.; Rothe, R.; Günther, M.; Cui, M. Y.; Yang, X. G.; Wieduwild, R.; Eckert, K. et al. Cytocompatible, injectable, and electroconductive soft adhesives with hybrid covalent/noncovalent dynamic network. Adv. Sci. 2019, 6, 1802077.

    Article  Google Scholar 

  87. Peng, Y.; Gu, S. Y.; Wu, Q.; Xie, Z. T.; Wu, J. R. High-performance self-healing polymers. Acc. Mater. Res. 2023, 4, 323–333.

    Article  CAS  Google Scholar 

  88. Zhou, Y.; Li, L.; Han, Z. B.; Li, Q.; He, J. L.; Wang, Q. Self-healing polymers for electronics and energy devices. Chem. Rev. 2023, 123, 558–612.

    Article  CAS  PubMed  Google Scholar 

  89. Wang, S. Y.; Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583.

    Article  ADS  CAS  Google Scholar 

  90. Kang, J.; Tok, J. B. H.; Bao, Z. N. Self-healing soft electronics. Nat. Electron. 2019, 2, 144–150.

    Article  Google Scholar 

  91. Cao, Y.; Tan, Y. J.; Li, S.; Lee, W. W.; Guo, H. C.; Cai, Y. Q.; Wang, C.; Tee, B. C. K. Self-healing electronic skins for aquatic environments. Nat. Electron. 2019, 2, 75–82.

    Article  Google Scholar 

  92. Li, Y.; Li, X. D.; Zhang, S. M.; Liu, L.; Hamad, N.; Bobbara, S. R.; Pasini, D.; Cicoira, F. Autonomic self-healing of PEDOT:PSS achieved via polyethylene glycol addition. Adv. Funct. Mater. 2020, 30, 2002853.

    Article  CAS  Google Scholar 

  93. Park, Y. G.; Jang, J.; Kim, H.; Hwang, J. C.; Kwon, Y. W.; Park, J. U. Self-healable, recyclable anisotropic conductive films of liquid metal-gelatin hybrids for soft electronics. Adv. Electron. Mater. 2022, 8, 2101034.

    Article  CAS  Google Scholar 

  94. Wei, D. L.; Wang, H. N.; Zhu, J. Q.; Luo, L. C.; Huang, H. B.; Li, L.; Yu, X. H. Highly stretchable, fast self-healing, responsive conductive hydrogels for supercapacitor electrode and motion sensor. Macromol. Mater. Eng. 2020, 305, 2000018.

    Article  CAS  Google Scholar 

  95. Shi, B.; Li, L.; Chen, A. B.; Jen, T. C.; Liu, X. Y.; Shen, G. Z. Continuous fabrication of Ti3C2Tx MXene-based braided coaxial zinc-ion hybrid supercapacitors with improved performance. Nano-Micro Lett. 2022, 14, 34.

    Article  ADS  CAS  Google Scholar 

  96. Wu, L. L.; Zhuang, Z. Z.; Li, S.; Ma, X. F.; Diao, W. J.; Bu, X. M.; Fang, Y. Ultrastretchable, super tough, and rapidly recoverable nanocomposite double-network hydrogels by dual physically hydrogen bond and vinyl-functionalized silica nanoparticles macro-crosslinking. Macromol. Mater. Eng. 2019, 304, 1800737.

    Article  Google Scholar 

  97. Liu, Y. X.; Feig, V. R.; Bao, Z. N. Conjugated polymer for implantable electronics toward clinical application. Adv. Healthc. Mater. 2021, 10, 2001916.

    Article  CAS  Google Scholar 

  98. Tang, H. R.; Liu, Z. X.; Hu, Z. C.; Liang, Y. Y.; Huang, F.; Cao, Y. Oxoammonium enabled secondary doping of hole transporting material PEDOT:PSS for high-performance organic solar cells. Sci. China Chem. 2020, 63, 802–809.

    Article  CAS  Google Scholar 

  99. Cheng, T.; Zhang, Y. Z.; Wang, S.; Chen, Y. L.; Gao, S. Y.; Wang, F.; Lai, W. Y.; Huang, W. Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv. Funct. Mater. 2021, 31, 2101303.

    Article  CAS  Google Scholar 

  100. Li, Y.; Zhou, X.; Sarkar, B.; Gagnon-Lafrenais, N.; Cicoira, F. Recent progress on self-healable conducting polymers. Adv. Mater. 2022, 34, 2108932.

    Article  CAS  Google Scholar 

  101. Chen, W.; Jiang, S. Q.; Xiao, H.; Zhou, X. F.; Xu, X. Y.; Yang, J. D.; Siddique, A. H.; Liu, Z. P. Graphene modified polyaniline-hydrogel based stretchable supercapacitor with high capacitance and excellent stretching stability. ChemSusChem 2021, 14, 938–945.

    Article  CAS  PubMed  Google Scholar 

  102. Qin, L. M.; Yang, G. Y.; Li, D.; Ou, K. T.; Zheng, H. Y.; Fu, Q.; Sun, Y. Y. High area energy density of all-solid-state supercapacitor based on double-network hydrogel with high content of graphene/PANI fiber. Chem. Eng. J. 2022, 430, 133045.

    Article  CAS  Google Scholar 

  103. Zou, Y. L.; Chen, C.; Sun, Y. J.; Gan, S. C.; Dong, L. B.; Zhao, J. H.; Rong, J. H. Flexible, all-hydrogel supercapacitor with self-healing ability. Chem. Eng. J. 2021, 418, 128616.

    Article  CAS  Google Scholar 

  104. Lin, J. H.; Du, X. S. Self-healable and redox active hydrogel obtained via incorporation of ferric ion for supercapacitor applications. Chem. Eng. J. 2022, 446, 137244.

    Article  CAS  Google Scholar 

  105. Zhang, S. M.; Li, Y.; Tomasello, G.; Anthonisen, M.; Li, X. D.; Mazzeo, M.; Genco, A.; Grutter, P.; Cicoira, F. Tuning the electromechanical properties of PEDOT:PSS films for stretchable transistors and pressure sensors. Adv. Electron. Mater. 2019, 5, 1900191.

    Article  Google Scholar 

  106. Li, Y.; Zhang, S. M.; Li, X. D.; Unnava, V. R. N.; Cicoira, F. Highly stretchable PEDOT:PSS organic electrochemical transistors achieved via polyethylene glycol addition. Flex. Print. Electron. 2019, 4, 044004.

    Article  CAS  Google Scholar 

  107. Donahue, M. J.; Sanchez-Sanchez, A.; Inal, S.; Qu, J.; Owens, R. M.; Mecerreyes, D.; Malliaras, G. G.; Martin, D. C. Tailoring PEDOT properties for applications in bioelectronics. Mater. Sci. Eng. R Rep. 2020, 140, 100546.

    Article  Google Scholar 

  108. Wang, J.; Li, Q.; Li, K. C.; Sun, X.; Wang, Y. Z.; Zhuang, T. T.; Yan, J. J.; Wang, H. Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding. Adv. Mater. 2022, 34, 2109904.

    Article  CAS  Google Scholar 

  109. Yao, B. W.; Wang, H. Y.; Zhou, Q. Q.; Wu, M. M.; Zhang, M.; Li, C.; Shi, G. Q. Ultrahigh-conductivity polymer hydrogels with arbitrary structures. Adv. Mater. 2017, 29, 1700974.

    Article  Google Scholar 

  110. Zhang, S. M.; Ling, H. N.; Chen, Y. H.; Cui, Q. Y.; Ni, J. H.; Wang, X. C.; Hartel, M. C.; Meng, X.; Lee, K.; Lee, J. et al. Hydrogel-enabled transfer-printing of conducting polymer films for soft organic bioelectronics. Adv. Funct. Mater. 2020, 30, 1906016.

    Article  CAS  Google Scholar 

  111. Li, Y.; Zhang, S. M.; Hamad, N.; Kim, K.; Liu, L.; Lerond, M.; Cicoira, F. Tailoring the self-healing properties of conducting polymer films. Macromol. Biosci. 2020, 20, 2000146.

    Article  CAS  Google Scholar 

  112. Zhou, X.; Rajeev, A.; Subramanian, A.; Li, Y.; Rossetti, N.; Natale, G.; Lodygensky, G. A.; Cicoira, F. Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes. Acta Biomater. 2022, 139, 296–306.

    Article  CAS  PubMed  Google Scholar 

  113. Zhu, B. C.; Chan, E. W. C.; Li, S. Y.; Sun, X.; Travas-Sejdic, J. Soft, flexible and self-healable supramolecular conducting polymer-based hydrogel electrodes for flexible supercapacitors. J. Mater. Chem. C 2022, 10, 14882–14891.

    Article  CAS  Google Scholar 

  114. Liu, L. C.; Han, Y. Y.; Lv, S. S. Design of self-healing and electrically conductive silk fibroin-based hydrogels. ACS Appl. Mater. Interfaces 2019, 11, 20394–20403.

    Article  CAS  PubMed  Google Scholar 

  115. Chen, C. R.; Qin, H. L.; Cong, H. P.; Yu, S. H. A highly stretchable and real-time healable supercapacitor. Adv. Mater. 2019, 31, 1900573.

    Article  Google Scholar 

  116. Liu, J. Y.; Zhong, Y.; Mu, K.; Han, T. L.; Zhang, H. G.; Si, T. A self-healing lithium-sulfur battery using gel-infilled microcapsules. ACS Appl. Energy Mater. 2021, 4, 6749–6756.

    Article  CAS  Google Scholar 

  117. Ding, Q. Q.; Xu, X. W.; Yue, Y. Y.; Mei, C. T.; Huang, C. B.; Jiang, S. H.; Wu, Q. L.; Han, J. Q. Nanocellulose-mediated electroconductive self-healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications. ACS Appl. Mater. Interfaces 2018, 10, 27987–28002.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, W.; Feng, P.; Chen, J.; Sun, Z. M.; Zhao, B. X. Electrically conductive hydrogels for flexible energy storage systems. Prog. Polym. Sci. 2019, 88, 220–240.

    Article  CAS  Google Scholar 

  119. Sun, Y. R.; Yu, F.; Li, C.; Dai, X. H.; Ma, J. Nano-/micro-confined water in graphene hydrogel as superadsorbents for water purification. Nano-Micro Lett. 2019, 12, 2.

    Article  ADS  Google Scholar 

  120. Guo, Y.; Zheng, K. Q.; Wan, P. B. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. Small 2018, 14, 1704497.

    Article  Google Scholar 

  121. Xu, T.; Yang, D. Z.; Zhang, S. Y.; Zhao, T. Y.; Zhang, M.; Yu, Z. Z. Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/PEDOT-polyvinyl alcohol hydrogel fibers with dual networks. Carbon 2021, 171, 201–210.

    Article  CAS  Google Scholar 

  122. Wang, H.; Li, J. M.; Li, K.; Lin, Y. P.; Chen, J. M.; Gao, L. J.; Nicolosi, V.; Xiao, X.; Lee, J. M. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 2021, 50, 1354–1390.

    Article  PubMed  Google Scholar 

  123. Yu, T.; Lei, X. P.; Zhou, Y. L.; Chen, H. N. Ti3C2Tx MXenes reinforced PAA/CS hydrogels with self-healing function as flexible supercapacitor electrodes. Polym. Adv. Technol. 2021, 32, 3167–3179.

    Article  CAS  Google Scholar 

  124. Lyu, F. C.; Yu, S. C.; Li, M. C.; Wang, Z. Y.; Nan, B.; Wu, S. F.; Cao, L. J.; Sun, Z. F.; Yang, M. Y.; Wang, W. X. et al. Supramolecular hydrogel directed self-assembly of C- and N-doped hollow CuO as high-performance anode materials for Li-ion batteries. Chem. Commun. 2017, 53, 2138–2141.

    Article  CAS  Google Scholar 

  125. Hao, Z. H.; Tao, F.; Wang, Z. K.; Cui, X. M.; Pan, Q. M. An omni-healable and tailorable aqueous lithium-ion battery. ChemElectroChem 2018, 5, 637–642.

    Article  CAS  Google Scholar 

  126. Lu, Y.; Zhang, Q.; Chen, J. Recent progress on lithium-ion batteries with high electrochemical performance. Sci. China Chem. 2019, 62, 533–548.

    Article  CAS  Google Scholar 

  127. Zhang, L. J.; Wang, H. T.; Zhang, X. M.; Tang, Y. B. A review of emerging dual-ion batteries: Fundamentals and recent advances. Adv. Funct. Mater. 2021, 31, 2010958.

    Article  CAS  Google Scholar 

  128. Shi, Q. T.; Zhou, J. H.; Ullah, S.; Yang, X. Q.; Tokarska, K.; Trzebicka, B.; Ta, H. Q.; Rümmeli, M. H. A review of recent developments in Si/C composite materials for Li-ion batteries. Energy Storage Mater. 2021, 34, 735–754.

    Article  Google Scholar 

  129. Cai, Y. F.; Liu, C. X.; Yu, Z. A.; Ma, W. C.; Jin, Q.; Du, R. C.; Qian, B. Y.; Jin, X. X.; Wu, H. M.; Zhang, Q. H. et al. Slidable and highly ionic conductive polymer binder for high-performance Si anodes in lithium-ion batteries. Adv. Sci. 2023, 9, 2205590.

    Article  Google Scholar 

  130. Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Mesostructured carbon-based nanocages: An advanced platform for energy chemistry. Sci. China Chem. 2020, 63, 665–681.

    Article  CAS  Google Scholar 

  131. Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size? Adv. Mater. 2022, 34, 2107836.

    Article  CAS  Google Scholar 

  132. Wang, R. R.; Wu, R. B.; Ding, C. F.; Chen, Z. L.; Xu, H. B.; Liu, Y. F.; Zhang, J. C.; Ha, Y.; Fei, B.; Pan, H. G. Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li-S batteries. Nano-Micro Lett. 2021, 13, 151.

    Article  ADS  CAS  Google Scholar 

  133. Zhao, Y. M.; Yue, F. S.; Li, S. C.; Zhang, Y.; Tian, Z. R.; Xu, Q.; Xin, S.; Guo, Y. G. Advances of polymer binders for silicon-based anodes in high energy density lithium-ion batteries. InfoMat 2021, 3, 460–501.

    Article  CAS  Google Scholar 

  134. Guo, Q. Y.; Zheng, Z. J. Rational design of binders for stable Li-S and Na-S batteries. Adv. Funct. Mater. 2020, 30, 1907931.

    Article  CAS  Google Scholar 

  135. Nam, J.; Kim, E.; K. K, R.; Kim, Y.; Kim, T. H. A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries. Sci. Rep. 2020, 10, 14966.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Chuang, Y. P.; Lin, Y. L.; Wang, C. C.; Hong, J. L. Dual cross-linked polymer networks derived from the hyperbranched poly(ethyleneimine) and poly(acrylic acid) as efficient binders for silicon anodes in lithium-ion batteries. ACS Appl. Energy Mater. 2021, 4, 1583–1592.

    Article  CAS  Google Scholar 

  137. Browning, K. L.; Sacci, R. L.; Doucet, M.; Browning, J. F.; Kim, J. R.; Veith, G. M. The study of the binder poly(acrylic acid) and its role in concomitant solid-electrolyte interphase formation on Si anodes. ACS Appl. Mater. Interfaces 2020, 12, 10018–10030.

    Article  CAS  PubMed  Google Scholar 

  138. Cho, Y.; Kim, J.; Elabd, A.; Choi, S.; Park, K.; Kwon, T. W.; Lee, J.; Char, K.; Coskun, A.; Choi, J. W. A pyrene-poly(acrylic acid)-polyrotaxane supramolecular binder network for high-performance silicon negative electrodes. Adv. Mater. 2019, 31, 1905048.

    Article  CAS  Google Scholar 

  139. Chen, J. H.; Zhang, Y.; Yang, J.; Nuli, Y. N.; Wang, J. L. Post lithium-sulfur battery era: Challenges and opportunities towards practical application. Sci. China Chem., in press, https://doi.org/10.1007/s11426-022-1421-7.

  140. Zhong, H. X.; He, J. R.; Zhang, L. Z. Crosslinkable aqueous binders containing Arabic gum-grafted-poly(acrylic acid) and branched polyols for Si anode of lithium-ion batteries. Polymer 2021, 215, 123377.

    Article  CAS  Google Scholar 

  141. Li, J. J.; Zhang, G. Z.; Yang, Y.; Yao, D. H.; Lei, Z. W.; Li, S.; Deng, Y. H.; Wang, C. Y. Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries. J. Power Sources 2018, 406, 102–109.

    Article  ADS  CAS  Google Scholar 

  142. Wang, Y.; Xu, H.; Chen, X.; Jin, H.; Wang, J. P. Novel constructive self-healing binder for silicon anodes with high mass loading in lithium-ion batteries. Energy Storage Mater. 2021, 38, 121–129.

    Article  Google Scholar 

  143. Lee, W. J.; Oh, H. G.; Cha, S. H. A brief review of self-healing polyurethane based on dynamic chemistry. Macromol. Res. 2021, 29, 649–664.

    Article  CAS  Google Scholar 

  144. Gao, C. H.; Gao, Y. L.; Wang, S. K.; Dong, Y. J.; Wu, Y. M.; Liu, Y. T.; Wang, C. X. Self-healing unsaturated polyester sensor based on multiple hydrogen bonds. Eur. Polym. J. 2022, 175, 111301.

    Article  CAS  Google Scholar 

  145. Zhang, G. Z.; Yang, Y.; Chen, Y. H.; Huang, J.; Zhang, T.; Zeng, H. B.; Wang, C. Y.; Liu, G.; Deng, Y. H. A quadruple-hydrogen-bonded supramolecular binder for high-performance silicon anodes in lithium-ion batteries. Small 2018, 14, 1801189.

    Article  Google Scholar 

  146. Jiao, X. X.; Yin, J. Q.; Xu, X. Y.; Wang, J. L.; Liu, Y. Y.; Xiong, S. Z.; Zhang, Q. L.; Song, J. X. Highly energy-dissipative, fast self-healing binder for stable Si anode in lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2005699.

    Article  CAS  Google Scholar 

  147. Jolley, M. J.; Pathan, T. S.; Wemyss, A. M.; Prokes, I.; Moharana, S.; Wan, C. Y.; Loveridge, M. J. Development and application of a poly(acrylic acid)-grafted styrene-butadiene rubber as a binder system for silicon-graphite anodes in Li-ion batteries. ACS Appl. Energy Mater. 2023, 6, 496–507.

    Article  CAS  Google Scholar 

  148. Xu, Z. X.; Yang, J.; Zhang, T.; Nuli, Y. N.; Wang, J. L.; Hirano, S. I. Silicon microparticle anodes with self-healing multiple network binder. Joule 2018, 2, 950–961.

    Article  CAS  Google Scholar 

  149. Liu, R. H.; Jiang, T.; Liu, D. Z.; Ma, X. A facile and green strategy to obtain organic room-temperature phosphorescence from natural lignin. Sci. China Chem. 2022, 65, 1100–1104.

    Article  CAS  Google Scholar 

  150. Park, H. K.; Kong, B. S.; Oh, E. S. Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries. Electrochem. Commun. 2011, 13, 1051–1053.

    Article  CAS  Google Scholar 

  151. Song, J. X.; Zhou, M. J.; Yi, R.; Xu, T.; Gordin, M. L.; Tang, D. H.; Yu, Z. X.; Regula, M.; Wang, D. H. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 5904–5910.

    Article  CAS  Google Scholar 

  152. Liang, Y. Y.; Offenhäusser, A.; Ingebrandt, S.; Mayer, D. PEDOT:PSS-based bioelectronic devices for recording and modulation of electrophysiological and biochemical cell signals. Adv. Healthc. Mater. 2021, 10, 2100061.

    Article  CAS  Google Scholar 

  153. Hu, S. M.; Wang, L. D. Y.; Huang, T.; Yu, A. S. A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries. J. Power Sources 2020, 449, 227472.

    Article  CAS  Google Scholar 

  154. Rupp, H.; Bhandary, R.; Kulkarni, A.; Binder, W. Printable electrolytes: Tuning 3D-printing by multiple hydrogen bonds and added inorganic lithium-salts. Adv. Mater. Technol. 2022, 7, 2200088.

    Article  CAS  Google Scholar 

  155. Kim, J.; Kim, M. S.; Lee, Y.; Kim, S. Y.; Sung, Y. E.; Ko, S. H. Hierarchically structured conductive polymer binders with silver nanowires for high-performance silicon anodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 17340–17347.

    Article  CAS  PubMed  Google Scholar 

  156. Ryu, J.; Kim, S.; Kim, J.; Park, S.; Lee, S.; Yoo, S.; Kim, J.; Choi, N. S.; Ryu, J. H.; Park, S. Room-temperature crosslinkable natural polymer binder for high-rate and stable silicon anodes. Adv. Funct. Mater. 2020, 30, 1908433.

    Article  CAS  Google Scholar 

  157. Li, J.; Lewis, R. B.; Dahn, J. R. Sodium carboxymethyl cellulose: A potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid-State Lett. 2007, 10, A17.

    Article  CAS  Google Scholar 

  158. Jeong, Y. K.; Choi, J. W. Mussel-inspired self-healing metallopolymers for silicon nanoparticle anodes. ACS Nano 2019, 13, 8364–8373.

    Article  CAS  PubMed  Google Scholar 

  159. Chen, Z.; Zhang, H. R.; Dong, T. T.; Mu, P. Z.; Rong, X. C.; Li, Z. T. Uncovering the chemistry of cross-linked polymer binders via chemical bonds for silicon-based electrodes. ACS Appl. Mater. Interfaces 2020, 12, 47164–47180.

    Article  CAS  PubMed  Google Scholar 

  160. Zhu, X. Y.; Zhang, F.; Zhang, L.; Zhang, L. Y.; Song, Y. Z.; Jiang, T.; Sayed, S.; Lu, C.; Wang, X. G.; Sun, J. Y. et al. A highly stretchable cross-linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage. Adv. Funct. Mater. 2018, 28, 1705015.

    Article  Google Scholar 

  161. Li, Z. H.; Wu, G.; Yang, Y. J.; Wan, Z. W.; Zeng, X. M.; Yan, L. J.; Wu, S. X.; Ling, M.; Liang, C. D.; Hui, K. N. et al. An ion-conductive grafted polymeric binder with practical loading for silicon anode with high interfacial stability in lithium-ion batteries. Adv. Energy Mater. 2022, 12, 2201197.

    Article  CAS  Google Scholar 

  162. Wang, H.; Wang, Y. Y.; Zheng, P. T.; Yang, Y.; Chen, Y. K.; Cao, Y. L.; Deng, Y. H.; Wang, C. Y. Self-healing double-cross-linked supramolecular binders of a polyacrylamide-grafted soy protein isolate for Li-S batteries. ACS Sustain. Chem. Eng. 2020, 8, 12799–12808.

    Article  Google Scholar 

  163. Rajeev, K. K.; Nam, J.; Jang, W.; Kim, Y.; Kim, T. H. Polysaccharide-based self-healing polymer binder via Schiff base chemistry for high-performance silicon anodes in lithium-ion batteries. Electrochim. Acta 2021, 384, 138364.

    Article  CAS  Google Scholar 

  164. Dufficy, M. K.; Corder, R. D.; Dennis, K. A.; Fedkiw, P. S.; Khan, S. A. Guar gel binders for silicon nanoparticle anodes: Relating binder rheology to electrode performance. ACS Appl. Mater. Interfaces 2021, 13, 51403–51413.

    Article  CAS  PubMed  Google Scholar 

  165. Su, Y. X.; Feng, X.; Zheng, R. B.; Lv, Y. Y.; Wang, Z. Y.; Zhao, Y.; Shi, L. Y.; Yuan, S. Binary network of conductive elastic polymer constraining nanosilicon for a high-performance lithium-ion battery. ACS Nano 2021, 15, 14570–14579.

    Article  CAS  PubMed  Google Scholar 

  166. Shi, Y. H.; Ma, D. Q.; Wang, W. J.; Zhang, L. F.; Xu, X. H. A supramolecular self-assembly hydrogel binder enables enhanced cycling of SnO2-based anode for high-performance lithium-ion batteries. J. Mater. Sci. 2017, 52, 3545–3555.

    Article  ADS  CAS  Google Scholar 

  167. Gao, R. H.; Zhang, Q.; Zhao, Y.; Han, Z. Y.; Sun, C. B.; Sheng, J. Z.; Zhong, X. W.; Chen, B.; Li, C.; Ni, S. Y. et al. Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2110313.

    Article  CAS  Google Scholar 

  168. Sun, Y. Z.; Huang, J. Q.; Zhao, C. Z.; Zhang, Q. A review of solid electrolytes for safe lithium-sulfur batteries. Sci. China Chem. 2017, 60, 1508–1526.

    Article  CAS  Google Scholar 

  169. Gao, X. J.; Hu, Q. Z.; Sun, K. J.; Peng, H.; Xie, X.; Hamouda, H. A.; Ma, G. F. A novel all-in-one integrated flexible supercapacitor based on self-healing hydrogel electrolyte. J. Alloys Compd. 2021, 888, 161554.

    Article  CAS  Google Scholar 

  170. Li, J. X.; Ren, J. F.; Li, C. X.; Li, P. X.; Wu, T. T.; Liu, S. W.; Wang, L. High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free Zn-ion battery. Nano Res. 2022, 15, 7190–7198.

    Article  ADS  CAS  Google Scholar 

  171. Dai, H. L.; Zhang, G. X.; Rawach, D.; Fu, C. Y.; Wang, C.; Liu, X. H.; Dubois, M.; Lai, C.; Sun, S. H. Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives. Energy Storage Mater. 2021, 34, 320–355.

    Article  Google Scholar 

  172. Dubal, D. P.; Chodankar, N. R.; Kim, D. H.; Gomez-Romero, P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 2018, 47, 2065–2129.

    Article  CAS  PubMed  Google Scholar 

  173. Bhat, T. S.; Patil, P. S.; Rakhi, R. B. Recent trends in electrolytes for supercapacitors. J. Energy Storage 2022, 50, 104222.

    Article  Google Scholar 

  174. Alipoori, S.; Mazinani, S.; Aboutalebi, S. H.; Sharif, F. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. J. Energy Storage 2020, 27, 101072.

    Article  Google Scholar 

  175. Bai, Y.; Liu, R.; Liu, Y.; Wang, Y. M.; Wang, X.; Xiao, H. H.; Yuan, G. H. Concentrated hydrogel electrolyte for integrated supercapacitor with high capacitance at subzero temperature. Sci. China Chem. 2021, 64, 852–860.

    Article  CAS  Google Scholar 

  176. Wu, W. Y.; Duan, J.; Wen, J. Y.; Chen, Y. W.; Liu, X. Y.; Huang, L. Q.; Wang, Z. F.; Deng, S. Y.; Huang, Y. H.; Luo, W. A writable lithium metal ink. Sci. China Chem. 2020, 63, 1483–1489.

    Article  CAS  Google Scholar 

  177. Lee, H.; Oh, P.; Kim, J.; Cha, H.; Chae, S.; Lee, S.; Cho, J. Advances and prospects of sulfide all-solid-state lithium batteries via one-to-one comparison with conventional liquid lithium ion batteries. Adv. Mater. 2019, 31, 1900376.

    Article  Google Scholar 

  178. Zhang, H.; Chen, Y. H.; Li, C. M.; Armand, M. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: A perspective. SusMat 2021, 1, 24–37.

    Article  CAS  Google Scholar 

  179. Li, H. L.; Lv, T.; Sun, H. H.; Qian, G. J.; Li, N.; Yao, Y.; Chen, T. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte. Nat. Commun. 2019, 10, 536.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  180. Elizalde, F.; Amici, J.; Trano, S.; Vozzolo, G.; Aguirresarobe, R.; Versaci, D.; Bodoardo, S.; Mecerreyes, D.; Sardon, H.; Bella, F. Self-healable dynamic poly(urea-urethane) gel electrolyte for lithium batteries. J. Mater. Chem. A 2022, 10, 12588–12596.

    Article  CAS  Google Scholar 

  181. Chen, T.; Kong, W. H.; Zhang, Z. W.; Wang, L.; Hu, Y.; Zhu, G. Y.; Chen, R. P.; Ma, L. B.; Yan, W.; Wang, Y. R. et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 2018, 54, 17–25.

    Article  ADS  CAS  Google Scholar 

  182. Guo, P. L.; Su, A. Y.; Wei, Y. J.; Liu, X. K.; Li, Y.; Guo, F. F.; Li, J.; Hu, Z. Y.; Sun, J. Q. Healable, highly conductive, flexible, and nonflammable supramolecular ionogel electrolytes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 19413–19420.

    Article  CAS  PubMed  Google Scholar 

  183. Guo, C. X.; Cao, Y. F.; Li, J. F.; Li, H. P.; Kumar Arumugam, S.; Oleksandr, S.; Chen, F. Solvent-free green synthesis of nonflammable and self-healing polymer film electrolytes for lithium metal batteries. Appl. Energy 2022, 323, 119571.

    Article  CAS  Google Scholar 

  184. Song, X. L.; Wang, C. L.; Chen, J. W.; Xin, S.; Yuan, D.; Wang, Y. L.; Dong, K.; Yang, L. P.; Wang, G. Y.; Zhang, H. T. et al. Unraveling the synergistic coupling mechanism of Li+ transport in an “ionogel-in-ceramic” hybrid solid electrolyte for rechargeable lithium metal battery. Adv. Funct. Mater. 2022, 32, 2108706.

    Article  CAS  Google Scholar 

  185. Li, Z.; Chu, L.; Li, S. L.; Chen, W. P.; Li, Z. Y.; Guo, P. L.; Hu, R. Z. Double-network ionogel electrolyte with superior mechanical performance and high safety for flexible lithium-ion batteries. ChemElectroChem 2022, 9, e202200337.

    Article  CAS  Google Scholar 

  186. Wang, Y. L.; Li, B.; Sarman, S.; Mocci, F.; Lu, Z. Y.; Yuan, J. Y.; Laaksonen, A.; Fayer, M. D. Microstructural and dynamical heterogeneities in ionic liquids. Chem. Rev. 2020, 120, 5798–5877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. D’Angelo, A. J.; Panzer, M. J. Design of stretchable and self-healing gel electrolytes via fully zwitterionic polymer networks in solvate ionic liquids for Li-based batteries. Chem. Mater. 2019, 31, 2913–2922.

    Article  Google Scholar 

  188. Xia, S. X.; Lopez, J.; Liang, C.; Zhang, Z. C.; Bao, Z. N.; Cui, Y.; Liu, W. High-rate and large-capacity lithium metal anode enabled by volume conformal and self-healable composite polymer electrolyte. Adv. Sci. 2019, 6, 1802353.

    Article  Google Scholar 

  189. Chen, X. Y.; Yi, L. G.; Zou, C. F.; Liu, J. L.; Yu, J.; Zang, Z. H.; Tao, X. Y.; Luo, Z. G.; Guo, X. W.; Chen, G. R. et al. High-performance gel polymer electrolyte with self-healing capability for lithium-ion batteries. ACS Appl. Energy Mater. 2022, 5, 5267–5276.

    Article  CAS  Google Scholar 

  190. Deng, K. R.; Zhou, S. P.; Xu, Z. L.; Xiao, M.; Meng, Y. Z. A high ion-conducting, self-healing and nonflammable polymer electrolyte with dynamic imine bonds for dendrite-free lithium metal batteries. Chem. Eng. J. 2022, 428, 131224.

    Article  CAS  Google Scholar 

  191. Jaumaux, P.; Liu, Q.; Zhou, D.; Xu, X. F.; Wang, T. Y.; Wang, Y. Z.; Kang, F. Y.; Li, B. H.; Wang, G. X. Deep-eutectic-solvent-based self-healing polymer electrolyte for safe and long-life lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 9134–9142.

    Article  CAS  Google Scholar 

  192. Ji, G. C.; Hu, R. F.; Wang, Y. H.; Zheng, J. P. High energy density, flexible, low temperature resistant and self-healing Zn-ion hybrid capacitors based on hydrogel electrolyte. J. Energy Storage 2022, 46, 103858.

    Article  Google Scholar 

  193. Yan, Y. C.; Duan, S. D.; Liu, B.; Wu, S. W.; Alsaid, Y.; Yao, B. W.; Nandi, S.; Du, Y. J.; Wang, T. W.; Li, Y. Z. et al. Tough hydrogel electrolytes for anti-freezing zinc-ion batteries. Adv. Mater. 2023, 35, 2211673.

    Article  CAS  Google Scholar 

  194. Huang, Y.; Liu, J.; Wang, J. Q.; Hu, M. M.; Mo, F. N.; Liang, G. J.; Zhi, C. Y. Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew. Chem., Int. Ed. 2018, 57, 9810–9813.

    Article  CAS  Google Scholar 

  195. Huang, S.; Wan, F.; Bi, S. S.; Zhu, J. C.; Niu, Z. Q.; Chen, J. A self-healing integrated all-in-one zinc-ion battery. Angew. Chem., Int. Ed. 2019, 58, 4313–4317.

    Article  CAS  Google Scholar 

  196. Ling, W.; Mo, F. N.; Wang, J. Q.; Liu, Q. J.; Liu, Y.; Yang, Q. X.; Qiu, Y. J.; Huang, Y. Self-healable hydrogel electrolyte for dendrite-free and self-healable zinc-based aqueous batteries. Mater. Today Phys. 2021, 20, 100458.

    Article  CAS  Google Scholar 

  197. Shao, Y. Y.; Zhao, J.; Hu, W. G.; Xia, Z.; Luo, J. R.; Zhou, Y. J.; Zhang, L.; Yang, X. Z.; Ma, N.; Yang, D. Z. et al. Regulating interfacial ion migration via wool keratin mediated biogel electrolyte toward robust flexible Zn-ion batteries. Small 2022, 18, 2107163.

    Article  CAS  Google Scholar 

  198. Liu, X. J.; Li, X.; Yang, X. T.; Lu, J. Q.; Zhang, X.; Yuan, D.; Zhang, Y. Z. Influence of water on gel electrolytes for zinc-ion batteries. Chem.—Asian J. 2023, 18, e202201280.

    Article  CAS  PubMed  Google Scholar 

  199. Samanta, P.; Ghosh, S.; Kolya, H.; Kang, C. W.; Murmu, N. C.; Kuila, T. Molecular crowded “water-in-salt” polymer gel electrolyte for an ultra-stable Zn-ion battery. ACS Appl. Mater. Interfaces 2022, 14, 1138–1148.

    Article  CAS  PubMed  Google Scholar 

  200. Wu, Y.; Wang, N.; Liu, H.; Cui, R. K.; Gu, J. M.; Sun, R. B.; Zhu, Y. Q.; Gou, L.; Fan, X. Y.; Li, D. L. et al. Self-healing of surface defects on Zn electrode for stable aqueous zinc-ion batteries via manipulating the electrode/electrolyte interphases. J. Colloid Interface Sci. 2023, 629, 916–925.

    Article  ADS  CAS  PubMed  Google Scholar 

  201. Zhou, Z. F.; Li, G. C.; Zhang, J. J.; Zhao, Y. F. Wide working temperature range rechargeable lithium-sulfur batteries: A critical review. Adv. Funct. Mater. 2021, 31, 2107136.

    Article  CAS  Google Scholar 

  202. Jin, X. T.; Song, L.; Dai, C. L.; Ma, H. Y.; Xiao, Y. K.; Zhang, X. Q.; Han, Y. Y.; Li, X. Y.; Zhang, J. T.; Zhao, Y. et al. A self-healing zinc ion battery under −20 °C. Energy Storage Mater. 2022, 44, 517–526.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (No. NY221111) and Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No. 22KJB430038) awarded to Y. L. Z. W. L. thanks the support from the National Natural Science Foundation Program of China (No. 52204370) and Open project of Hebei Key Laboratory of Hazardous Chemicals Safety and Control Technology (No. 20211204-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li or Zhiwei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ding, P., Gu, Y. et al. Self-healable gels in electrochemical energy storage devices. Nano Res. 17, 3302–3323 (2024). https://doi.org/10.1007/s12274-023-6063-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6063-6

Keywords

Navigation