Skip to main content
Log in

Heterostructured NiS2@SnS2 hollow spheres as superior high-rate and durable anodes for sodium-ion batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2022

This article has been updated

Abstract

Tin-based sulfides have attracted increasing attention as anodes for sodium-ion batteries (SIBs) owing to their high theoretical capacity; however, the poor rate capability and inferior cycling stability caused by the low electrical conductivity, sluggish kinetics and drastic volume variations during cycling have greatly hampered their practical applications. Herein, heterostructured NiS2@SnS2 hybrid spheres were delicately designed and constructed by anchoring interconnected SnS2 nanosheets on metal-organic frameworks (MOFs)-derived NiS2 hollow spheres coupled with N-doped carbon skeleton through facile solvothermal and sulfurization/carbonization processes. The unique hollow heterostructure with highly conductive carbon matrix can effectively facilitate the charge transfer kinetics and ensure the desired buffer space while endowing more active sites and enhanced structural integrity, as demonstrated by the experimental and density functional theory (DFT) results. Benefitting from these merits, the NiS2@SnS2 hybrid composite displays a high reversible capacity of 820 mAh g−1 after 250 cycles at 1 A g−1, and retains a value of 673 mAh g−1 after 1,300 cycles at 5 A g−1, manifesting the excellent high-rate and durable sodium storage behaviors when applied in SIBs. This study shall shed more light on the fabricating and interface engineering of other transition metal based composite anodes for high performance SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Cui J, Yao S, Kim JK. Energy Storage Mater, 2017, 7: 64–114

    Article  Google Scholar 

  2. Lukatskaya MR, Dunn B, Gogotsi Y. Nat Commun, 2016, 7: 12647

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li W, Chou SL, Wang JZ, Kim JH, Liu HK, Dou SX. Adv Mater, 2014, 26: 4037–4042

    Article  CAS  PubMed  Google Scholar 

  4. Ding J, Hu W, Paek E, Mitlin D. Chem Rev, 2018, 118: 6457–6498

    Article  CAS  PubMed  Google Scholar 

  5. Wei Z, Wang L, Zhuo M, Ni W, Wang H, Ma J. J Mater Chem A, 2018, 6: 12185–12214

    Article  CAS  Google Scholar 

  6. Saroja APVK, Li B, Xu Y. Nanoscale Adv, 2021, 3: 5442–5464

    Article  Google Scholar 

  7. Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L. Acc Chem Res, 2016, 49: 231–240

    Article  CAS  PubMed  Google Scholar 

  8. Lu Y, Saroja APVK, Wei R, Xu Y. Cell Rep Phys Sci, 2021, 2: 100555

    Article  CAS  Google Scholar 

  9. Azam MA, Safie NE, Ahmad AS, Yuza NA, Zulkifli NSA. J Energy Storage, 2021, 33: 102096

    Article  Google Scholar 

  10. Dou X, Hasa I, Saurel D, Vaalma C, Wu L, Buchholz D, Bresser D, Komaba S, Passerini S. Mater Today, 2019, 23: 87–104

    Article  CAS  Google Scholar 

  11. Lao M, Zhang Y, Luo W, Yan Q, Sun W, Dou SX. Adv Mater, 2017, 29: 1700622

    Article  Google Scholar 

  12. Tan H, Feng Y, Rui X, Yu Y, Huang S. Small Methods, 2019, 4: 1900563

    Article  Google Scholar 

  13. Chen X, Ge G, Wang W, Zhang B, Jiang J, Yang X, Li Y, Wang L, He X, Sun Y. Sci China Chem, 2021, 64: 1417–1425

    Article  CAS  Google Scholar 

  14. Xu Y, Sun J, He Y, Li J, Xu J, Sun Y, Liao J, Zhou X. Sci China Chem, 2021, 64: 1401–1409

    Article  CAS  Google Scholar 

  15. Fang S, Bresser D, Passerini S. Adv Energy Mater, 2019, 10: 1902485

    Article  Google Scholar 

  16. Tan H, Chen D, Rui X, Yu Y. Adv Funct Mater, 2019, 29: 1808745

    Article  Google Scholar 

  17. Li WJ, Han C, Chou SL, Wang JZ, Li Z, Kang YM, Liu HK, Dou SX. Chem Eur J, 2016, 22: 590–597

    Article  CAS  PubMed  Google Scholar 

  18. Shen Y, Deng S, Liu P, Zhang Y, Li Y, Tong X, Shen H, Liu Q, Pan G, Zhang L, Wang X, Xia X, Tu J. Small, 2020, 16: 2004072

    Article  CAS  Google Scholar 

  19. Shan Y, Li Y, Pang H. Adv Funct Mater, 2020, 30: 2001298

    Article  CAS  Google Scholar 

  20. Zhou T, Pang WK, Zhang C, Yang J, Chen Z, Liu HK, Guo Z. ACS Nano, 2014, 8: 8323–8333

    Article  CAS  PubMed  Google Scholar 

  21. Li S, Zhao Z, Li C, Liu Z, Li D. Nano-Micro Lett, 2019, 11: 14

    Article  CAS  Google Scholar 

  22. Yang F, Zhao X, Xue T, Yuan S, Huang Y, Fan W, Liu T. Sci China Mater, 2021, 64: 1267–1277

    Article  CAS  Google Scholar 

  23. Zhang J, Li C, Hou J, Zhang J, Wang L, Wang P, Yao Z, Yang Y. ACS Appl Energy Mater, 2021, 4: 8572–8582

    Article  CAS  Google Scholar 

  24. Wang L, Zhao Q, Wang Z, Wu Y, Ma X, Zhu Y, Cao C. Nanoscale, 2020, 12: 248–255

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Yu XY, Fang Y, Zhu X, Bao J, Zhou X, Lou XWD. Joule, 2018, 2: 725–735

    Article  CAS  Google Scholar 

  26. Luo B, Hu Y, Zhu X, Qiu T, Zhi L, Xiao M, Zhang H, Zou M, Cao A, Wang L. J Mater Chem A, 2018, 6: 1462–1472

    Article  CAS  Google Scholar 

  27. Jiang Y, Wei M, Feng J, Ma Y, Xiong S. Energy Environ Sci, 2016, 9: 1430–1438

    Article  Google Scholar 

  28. Jia H, Chen C, Oladele O, Tang Y, Li G, Zhang X, Yan F. Commun Chem, 2018, 1: 86

    Article  Google Scholar 

  29. Yang C, Liang X, Ou X, Zhang Q, Zheng HS, Zheng F, Wang JH, Huang K, Liu M. Adv Funct Mater, 2019, 29: 1807971

    Article  Google Scholar 

  30. Guan S, Wang T, Fu X, Fan LZ, Peng Z. Appl Surf Sci, 2020, 508: 145241

    Article  CAS  Google Scholar 

  31. Sun Q, Li D, Dai L, Liang Z, Ci L. Small, 2020, 16: 2005023

    Article  CAS  Google Scholar 

  32. Ryu UJ, Jee S, Rao PC, Shin J, Ko C, Yoon M, Park KS, Choi KM. Coord Chem Rev, 2021, 426: 213544

    Article  CAS  PubMed  Google Scholar 

  33. Cao X, Tan C, Sindoro M, Zhang H. Chem Soc Rev, 2017, 46: 2660–2677

    Article  CAS  PubMed  Google Scholar 

  34. Zhong M, Kong L, Li N, Liu YY, Zhu J, Bu XH. Coord Chem Rev, 2019, 388: 172–201

    Article  CAS  Google Scholar 

  35. Kim MK, Kim MS, Park JH, Kim J, Ahn CY, Jin A, Mun J, Sung YE. Nanoscale, 2020, 12: 15214–15221

    Article  CAS  PubMed  Google Scholar 

  36. Jin A, Yu SH, Park JH, Kang SM, Kim MJ, Jeon TY, Mun J, Sung YE. Nano Res, 2019, 12: 2609–2613

    Article  CAS  Google Scholar 

  37. Zhang G, Shu J, Xu L, Cai X, Zou W, Du L, Hu S, Mai L. Nano-Micro Lett, 2021, 13: 105

    Article  CAS  Google Scholar 

  38. Zou F, Chen YM, Liu K, Yu Z, Liang W, Bhaway SM, Gao M, Zhu Y. ACS Nano, 2016, 10: 377–386

    Article  CAS  PubMed  Google Scholar 

  39. Cao D, Kang W, Wang S, Wang Y, Sun K, Yang L, Zhou X, Sun D, Cao Y. J Mater Chem A, 2019, 7: 8268–8276

    Article  CAS  Google Scholar 

  40. Bi R, Zeng C, Huang H, Wang X, Zhang L. J Mater Chem A, 2018, 6: 14077–14082

    Article  CAS  Google Scholar 

  41. Sarkar S, Roy S, Hou Y, Sun S, Zhang J, Zhao Y. ChemSusChem, 2021, 14: 3693–3723

    Article  CAS  PubMed  Google Scholar 

  42. Jiang Y, Song D, Wu J, Wang Z, Huang S, Xu Y, Chen Z, Zhao B, Zhang J. ACS Nano, 2019, 13: 9100–9111

    Article  CAS  PubMed  Google Scholar 

  43. Liu S, Lu X, Xie J, Cao G, Zhu T, Zhao X. ACS Appl Mater Interfaces, 2013, 5: 1588–1595

    Article  CAS  PubMed  Google Scholar 

  44. Sun W, Rui X, Yang D, Sun Z, Li B, Zhang W, Zong Y, Madhavi S, Dou S, Yan Q. ACS Nano, 2015, 9: 11371–11381

    Article  CAS  PubMed  Google Scholar 

  45. Xu X, Zhao R, Chen B, Wu L, Zou C, Ai W, Zhang H, Huang W, Yu T. Adv Mater, 2019, 31: 1900526

    Article  Google Scholar 

  46. Liu G, Li Z, Hasan T, Chen X, Zheng W, Feng W, Jia D, Zhou Y, Hu PA. J Mater Chem A, 2017, 5: 1989–1995

    Article  CAS  Google Scholar 

  47. Fan S, Huang S, Chen Y, Shang Y, Wang Y, Kong D, Pam ME, Shi L, Lim YW, Shi Y, Yang HY. Energy Storage Mater, 2019, 23: 17–24

    Article  Google Scholar 

  48. Zhao W, Ci S, Hu X, Chen J, Wen Z. Nanoscale, 2019, 11: 4688–4695

    Article  CAS  PubMed  Google Scholar 

  49. Yang X, Mao J, Niu H, Wang Q, Zhu K, Ye K, Wang G, Cao D, Yan J. Chem Eng J, 2021, 406: 126713

    Article  CAS  Google Scholar 

  50. Cao L, Gao X, Zhang B, Ou X, Zhang J, Luo WB. ACS Nano, 2020, 14: 3610–3620

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y, Chen L, Chen H, Huang T, Shi Q, Wang X, Wang Y, Tang MC, Zhou NY, Lin S. Sci China Chem, 2021, 64: 1730–1735

    Article  CAS  Google Scholar 

  52. Liu T, Zhang L, Cheng B, Yu J. Adv Energy Mater, 2019, 9: 1803900

    Article  Google Scholar 

  53. Feng J, Luo S, Yan S, Zhan Y, Wang Q, Zhang Y, Liu X, Chang L. J Mater Chem A, 2021, 9: 1610–1622

    Article  CAS  Google Scholar 

  54. Sun R, Liu S, Wei Q, Sheng J, Zhu S, An Q, Mai L. Small, 2017, 13: 1701744

    Article  Google Scholar 

  55. Shi L, Li D, Yao P, Yu J, Li C, Yang B, Zhu C, Xu J. Small, 2018, 14: 1802716

    Article  Google Scholar 

  56. Wang X, Li X, Li Q, Li H, Xu J, Wang H, Zhao G, Lu L, Lin X, Li H, Li S. Nano-Micro Lett, 2018, 10: 46

    Article  Google Scholar 

  57. Yuan J, Qu B, Zhang Q, He W, Xie Q, Peng DL. Small, 2020, 16: 1907261

    Article  CAS  Google Scholar 

  58. Jiang Y, Guo Y, Lu W, Feng Z, Xi B, Kai S, Zhang J, Feng J, Xiong S. ACS Appl Mater Interfaces, 2017, 9: 27697–27706

    Article  CAS  PubMed  Google Scholar 

  59. Vu TT, Park S, Park J, Kim S, Mathew V, Alfaruqi MH, Kim KH, Sun YK, Hwang JY, Kim J. J Mater Chem A, 2020, 8: 24401–24407

    Article  CAS  Google Scholar 

  60. Sun H, Xin G, Hu T, Yu M, Shao D, Sun X, Lian J. Nat Commun, 2014, 5: 4526

    Article  CAS  PubMed  Google Scholar 

  61. Zhen Y, Sa R, Zhou K, Ding L, Chen Y, Mathur S, Hong Z. Nano Energy, 2020, 74: 104895

    Article  CAS  Google Scholar 

  62. Liu Q, Gao J, Cao C, Yin G, Jiang Z, Ge M, Xiao X, Lee WK, Wang J. Nano Energy, 2019, 62: 384–392

    Article  CAS  Google Scholar 

  63. Wang P, Huang J, Zhang J, Wang L, Sun P, Yang Y, Yao Z. J Mater Chem A, 2021, 9: 7248–7256

    Article  CAS  Google Scholar 

  64. Yao Z, Cai C, Li C, Hou J, Zhang J, He L, Yang Y, Xia X, Xiong J. ACS Appl Energy Mater, 2021, 4: 10380–10390

    Article  CAS  Google Scholar 

  65. Fang G, Wu Z, Zhou J, Zhu C, Cao X, Lin T, Chen Y, Wang C, Pan A, Liang S. Adv Energy Mater, 2018, 8: 1703155

    Article  Google Scholar 

  66. Zhao W, Wang X, Ma X, Yue L, Liu Q, Luo Y, Liu Y, Asiri AM, Sun X. J Mater Chem A, 2021, 9: 15807–15819

    Article  CAS  Google Scholar 

  67. Brezesinski T, Wang J, Polleux J, Dunn B, Tolbert SH. J Am Chem Soc, 2009, 131: 1802–1809

    Article  CAS  PubMed  Google Scholar 

  68. Ren X, Ren Z, Li Q, Wen W, Li X, Chen Y, Xie L, Zhang L, Zhu D, Gao B, Chu PK, Huo K. Adv Energy Mater, 2019, 9: 1900091

    Article  Google Scholar 

  69. Li J, Li J, Yan D, Hou S, Xu X, Lu T, Yao Y, Mai W, Pan L. J Mater Chem A, 2018, 6: 6595–6605

    Article  CAS  Google Scholar 

  70. Ou X, Cao L, Liang X, Zheng F, Zheng HS, Yang X, Wang JH, Yang C, Liu M. ACS Nano, 2019, 13: 3666–3676

    Article  CAS  PubMed  Google Scholar 

  71. Guo C, Zhang W, Liu Y, He J, Yang S, Liu M, Wang Q, Guo Z. Adv Funct Mater, 2019, 29: 1901925

    Article  Google Scholar 

  72. Luo W, Li F, Li Q, Wang X, Yang W, Zhou L, Mai L. ACS Appl Mater Interfaces, 2018, 10: 7201–7207

    Article  CAS  PubMed  Google Scholar 

  73. Ye J, Zhao H, Song W, Wang N, Kang M, Li Z. J Power Sources, 2019, 412: 606–614

    Article  CAS  Google Scholar 

  74. Li H, Peng L, Zhu Y, Chen D, Zhang X, Yu G. Energy Environ Sci, 2016, 9: 3399–3405

    Article  CAS  Google Scholar 

  75. Niu YB, Guo YJ, Yin YX, Zhang SY, Wang T, Wang P, Xin S, Guo YG. Adv Mater, 2020, 32: 2001419

    Article  CAS  Google Scholar 

  76. Ye H, Wang L, Deng S, Zeng X, Nie K, Duchesne PN, Wang B, Liu S, Zhou J, Zhao F, Han N, Zhang P, Zhong J, Sun X, Li Y, Li Y, Lu J. Adv Energy Mater, 2016, 7: 1601602

    Article  Google Scholar 

  77. Li S, He W, Liu B, Cui J, Wang X, Peng DL, Liu B, Qu B. Energy Storage Mater, 2020, 25: 636–643

    Article  Google Scholar 

  78. Wang B, Miao X, Dong H, Ma X, Wu J, Cheng Y, Geng H, Li CC. J Mater Chem A, 2021, 9: 14582–14592

    Article  CAS  Google Scholar 

  79. Long Y, Yang J, Gao X, Xu X, Fan W, Yang J, Hou S, Qian Y. ACS Appl Mater Interfaces, 2018, 10: 10945–10954

    Article  CAS  PubMed  Google Scholar 

  80. Pan J, Chen S, Zhang D, Xu X, Sun Y, Tian F, Gao P, Yang J. Adv Funct Mater, 2018, 28: 1804672

    Article  Google Scholar 

  81. Thangavel R, Pandian AS, Ramasamy HV, Lee YS. ACS Appl Mater Interfaces, 2017, 9: 40187–40196

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Zhejiang Provincial Natural Science Foundation of China (LY21E020010), the National Natural Science Foundation of China (52102315), and the Fundamental Research Fund of Zhejiang Sci-Tech University (2021Y005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yefeng Yang.

Additional information

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest

The authors declare no conflict of interest.

The online version of the original article can be found at https://doi.org/10.1007/s11426-022-1393-1

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Hou, J., Zhang, J. et al. Heterostructured NiS2@SnS2 hollow spheres as superior high-rate and durable anodes for sodium-ion batteries. Sci. China Chem. 65, 1420–1432 (2022). https://doi.org/10.1007/s11426-022-1299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1299-5

Navigation