Skip to main content
Log in

Two-dimensional polymer nanosheets for efficient energy storage and conversion

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a promising graphene analogue, two-dimensional (2D) polymer nanosheets with unique 2D features, diversified topological structures and as well as tunable electronic properties, have received extensive attention in recent years. Here in this review, we summarized the recent research progress in the preparation methods of 2D polymer nanosheets, mainly including interfacial polymerization and solution polymerization. We also discussed the recent research advancements of 2D polymer nanosheets in the fields of energy storage and conversion applications, such as batteries, supercapacitors, electrocatalysis and photocatalysis. Finally, on the basis of their current development, we put forward the existing challenges and some personal perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, H. Introduction: 2D materials chemistry. Chem. Rev.2018, 118, 6089–6090.

    CAS  Google Scholar 

  2. Zavabeti, A.; Jannat, A.; Zhong, L.; Haidry, A. A.; Yao, Z. J.; Ou, J. Z. Two-dimensional materials in large-areas: Synthesis, properties and applications. Nano-Micro Lett.2020, 12, 66.

    CAS  Google Scholar 

  3. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev.2017, 117, 6225–6331.

    CAS  Google Scholar 

  4. Lu, Q. P.; Yu, Y, F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater.2016, 28, 1917–1933.

    CAS  Google Scholar 

  5. Bai, S.; Xiong, Y. J. Recent advances in two-dimensional nanostructures for catalysis applications. Sci. Adv. Mater.2015, 7, 2168–2181.

    CAS  Google Scholar 

  6. Tao, H. C.; Fan, Q.; Ma, T.; Liu, S. Z.; Gysling, H.; Texter, J.; Guo, F.; Sun, Z. Y. Two-dimensional materials for energy conversion and storage. Prog. Mater. Sci.2020, 111, 100637.

    CAS  Google Scholar 

  7. Tao, H. C.; Gao, Y. N.; Talreja, N.; Guo, F.; Texter, J.; Yan, C.; Sun, Z. Y. Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. J. Mater. Chem. A2017, 5, 7257–7284.

    CAS  Google Scholar 

  8. Mandal, A. K.; Mahmood, J.; Baek, J. B. Two-dimensional covalent organic frameworks for optoelectronics and energy storage. ChemNanoMat2017, 3, 373–391.

    CAS  Google Scholar 

  9. Galeotti, G.; De Marchi, F.; Hamzehpoor, E.; MacLean, O.; Rao, M. R.; Chen, Y.; Besteiro, L. V.; Dettmann, D.; Ferrari, L.; Frezza, F. et al. Synthesis of mesoscale ordered two-dimensional n-conjugated polymers with semiconducting properties. Nat. Mater., in press, https://doi.org/10.1038/s41563-020-0682-z.

  10. Qin, H. L.; Wang, D.; Xiong, X.; Jin, J. Free-standing, single-bilayer-thick polymeric nanosheets via spatially confined polymerization. Macromol. Rapid Commun.2014, 35, 1055–1060.

    CAS  Google Scholar 

  11. Cai, S. L.; Zhang, W. G.; Zuckermann, R. N.; Li, Z. T.; Zhao, X.; Liu, Y. The organic flatland—Recent advances in synthetic 2D organic layers. Adv. Mater.2015, 27, 5762–5770.

    CAS  Google Scholar 

  12. Xiang, Z. H.; Cao, D. P.; Dai, L. M. Well-defined two dimensional covalent organic polymers: Rational design, controlled syntheses, and potential applications. Polym. Chem.2015, 6, 1896–1911.

    CAS  Google Scholar 

  13. Wang, J.; Li, N.; Xu, Y. X.; Pang, H. Frontispiece: Two-dimensional MOF and COF nanosheets: Synthesis and applications in electrochemistry. Chem.—Eur. J.2020, 26, 6402–6422.

    CAS  Google Scholar 

  14. Staudinger, H. Über polymerisation. Ber. Dtsch. Chem. Ges.1920, 53, 1073–1085.

    Google Scholar 

  15. Wang, W.; Schlüter, A. D. Synthetic 2D polymers: A critical perspective and a look into the future. Macromol. Rapid Commun.2019, 40, 1800719.

    Google Scholar 

  16. Payamyar, P.; King, B. T.; Öttinger, H. C.; Schlüter, A. D. Two-dimensional polymers: Concepts and perspectives. Chem. Commun.2016, 52, 18–34.

    CAS  Google Scholar 

  17. Servalli, M.; Schlüter, A. D. Synthetic two-dimensional polymers. Annu. Rev. Mater. Res.2017, 47, 361–389.

    CAS  Google Scholar 

  18. Schlüter, A. D. Mastering polymer chemistry in two dimensions. Commun. Chem.2020, 3, 12.

    Google Scholar 

  19. Barpuzary, D.; Kim, K.; Park, M. J. Two-dimensional conducting polymers: Synthesis and charge transport. J. Polym. Sci. Pol. Phys.2019, 57, 1169–1176.

    CAS  Google Scholar 

  20. Govindaraju, T.; Avinash, M. B. Two-dimensional nanoarchitectonics: Organic and hybrid materials. Nanoscale2012, 4, 6102–6117.

    CAS  Google Scholar 

  21. Kissel, P.; Erni, R.; Schweizer, W. B.; Rossell, M. D.; King, B. T.; Bauer, T.; Götzinger, S.; Schlüter, A. D.; Sakamoto, J. A two-dimensional polymer prepared by organic synthesis. Nat. Chem.2012, 4, 287–291.

    CAS  Google Scholar 

  22. Xiao, P. T.; Xu, Y. X. Recent progress in two-dimensional polymers for energy storage and conversion: Design, synthesis, and applications. J. Mater. Chem. A2018, 6, 21676–21695.

    CAS  Google Scholar 

  23. Bi, S.; Lu, C. B.; Zhang, W. B.; Qiu, F.; Zhang, F. Two-dimensional polymer-based nanosheets for electrochemical energy storage and conversion. J. Energy Chem.2018, 27, 99–116.

    Google Scholar 

  24. Sakamoto, J.; Van Heijst, J. V.; Lukin, O.; Schlüter, A. D. Two-dimensional polymers: Just a dream of synthetic chemists? Angew. Chem., Int. Ed.2009, 48, 1030–1069.

    CAS  Google Scholar 

  25. Zhuang, X. D.; Mai, Y. Y.; Wu, F. Q.; Zhang, F.; Feng, X. L. Two-dimensional soft nanomaterials: A fascinating world of materials. Adv. Mater.2015, 27, 403–427.

    CAS  Google Scholar 

  26. Zheng, C. N.; Zhu, J. H.; Yang, C. Q.; Lu, C. B.; Chen, Z. Y.; Zhuang, X. D. The art of two-dimensional soft nanomaterials. Sci. China Chem.2019, 62, 1145–1193.

    CAS  Google Scholar 

  27. Colson, J. W.; Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem.2013, 5, 453–465.

    CAS  Google Scholar 

  28. Li, C. G.; Wang, Y. S.; Dong, H. L.; Zhang, X. T.; Hu, W. P. Two-dimensional conjugated polymers synthesized via on-surface chemistry. Sci China Mater.2020, 63, 172–176.

    Google Scholar 

  29. Zhong, Y.; Cheng, B. R.; Park, C.; Ray, A.; Brown, S; Mujid, F.; Lee, J. U.; Zhou, H.; Suh, J.; Lee, K. H. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science2019, 366, 1379–1384.

    CAS  Google Scholar 

  30. Ma, T. Q.; Kapustin, E. A.; Yin, S. X.; Liang, L.; Zhou, Z. Y.; Niu, J.; Li, L. H.; Wang, Y. Y.; Su, J.; Li, J. et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science2018, 361, 48–52.

    CAS  Google Scholar 

  31. Yue, J. Y.; Mo, Y. P.; Li, S. Y.; Dong, W. L.; Chen, T.; Wang, D. Simultaneous construction of two linkages for the on-surface synthesis of imine-boroxine hybrid covalent organic frameworks. Chem. Sci.2017, 8, 2169–2174.

    CAS  Google Scholar 

  32. Zhou, D.; Tan, X. Y.; Wu, H. M.; Tian, L. H.; Li, M. Synthesis of C-C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid-liquid interface. Angew. Chem., Int. Ed.2019, 58, 1376–1381.

    CAS  Google Scholar 

  33. Braslau, A.; Deutsch, M.; Pershan, P. S.; Weiss, A. H.; Als-Nielsen, J.; Bohr, J. Surface roughness of water measured by X-ray reflectivity. Phys. Rev. Lett.1985, 54, 114–117.

    CAS  Google Scholar 

  34. Liu, K. J.; Qi, H; Y.; Dong, R. H.; Shivhare, R.; Addicoat, M.; Zhang, Z.; Sahabudeen, H.; Heine, T.; Mannsfeld, S.; Kaiser, U. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem.2019, 11, 994–1000

    CAS  Google Scholar 

  35. Sahabudeen, H.; Qi, H; Y.; Ballabio, M.; Polozij, M.; Olthof, S.; Shivhare, R.; Jing, Y.; Park, S. W.; Liu, K. J.; Zhang, T. et al. Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis. Angew. Chem., Int. Ed.2020, 132, 6084–6092.

    Google Scholar 

  36. Liu, J.; Yang, F. X.; Cao, L. L.; Li, B. L.; Yuan, K.; Lei, S. B.; Hu, W. P. A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film. Adv. Mater.2019, 31, 1902264.

    Google Scholar 

  37. Payamyar, P.; Kaja, K.; Ruiz-Vargas, C.; Stemmer, A.; Murray, D. J.; Johnson, C. J.; King, B. T.; Schiffmann, F.; VandeVondele, J.; Renn, A. et al. Synthesis of a covalent monolayer sheet by photochemical anthracene dimerization at the air/water interface and its mechanical characterization by AFM indentation. Adv. Mater.2014, 26, 2052–2058.

    CAS  Google Scholar 

  38. Chen, Y. G.; Li, M.; Payamyar, P.; Zheng, Z. K.; Sakamoto, J.; Schlüter, A. D. Room temperature synthesis of a covalent monolayer sheet at air/water interface using a shape-persistent photoreactive amphiphilic monomer. ACS Macro Lett.2014, 3, 153–158.

    CAS  Google Scholar 

  39. Murray, D. J.; Patterson, D. D; Payamyar, P.; Bhola, R.; Song, W. T.; Lackinger, M.; Schlüter, A. D.; King, B. T. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc.2015, 137, 3450–3453.

    CAS  Google Scholar 

  40. Müller, V.; Hinaut, A.; Moradi, M.; Baljozovic, M.; Jung, T. A.; Shahgaldian, P.; Möhwald, H.; Hofer, G.; Kröger, M.; King, B. T. et al. A two-dimensional polymer synthesized at the air/water interface. Angew. Chem., Int. Ed.2018, 57, 10584–10588.

    Google Scholar 

  41. Grill, L.; Dyer, M.; Lafferentz, L.; Persson, M.; Peters, M. V.; Hecht, S. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol.2007, 2, 687–691.

    CAS  Google Scholar 

  42. Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions. J. Am. Chem. Soc.2013, 135, 10470–10474.

    CAS  Google Scholar 

  43. Rodríguez-San-Miguel, D.; Amo-Ochoa, P.; Zamora, F. MasterChem: Cooking 2D-polymers. Chem. Commun.2016, 52, 4113–4127.

    Google Scholar 

  44. Baek, K.; Yun, G.; Kim, Y.; Kim, D.; Hota, R.; Hwang, I.; Xu, D.; Ko, Y. H.; Gu, G. H.; Suh, J. H. et al. Free-standing, single-monomer-thick two-dimensional polymers through covalent self-assembly in solution. J. Am. Chem. Soc.2013, 135, 6523–6528.

    CAS  Google Scholar 

  45. Zhou, T. Y.; Lin, F.; Li, Z. T.; Zhao, X. Single-step solution-phase synthesis of free-standing two-dimensional polymers and their evolution into hollow spheres. Macromolecules2013, 46, 7745–7752.

    CAS  Google Scholar 

  46. Liu, W. B.; Li, X. K.; Wang, C. M.; Pan, H. H.; Liu, W. P.; Wang, K.; Zeng, Q. D.; Wang, R. M.; Jiang, J. Z. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc.2019, 141, 17431–17440.

    CAS  Google Scholar 

  47. Liu, J. J.; Zan, W.; Li, K.; Yang, Y.; Bu, F. X.; Xu, Y. X. Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile. J. Am. Chem. Soc.2017, 139, 11666–11669.

    CAS  Google Scholar 

  48. Yang, Y.; Bu, F. X.; Liu, J. J.; Shakir, I.; Xu, Y. X. Mechanochemical synthesis of two-dimensional aromatic polyamides. Chem. Commun.2017, 53, 7481–7484.

    CAS  Google Scholar 

  49. Bunck, D. N.; Dichtel, W. R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc.2013, 135, 14952–14955.

    CAS  Google Scholar 

  50. Waller, P. J.; Gándara, F.; Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res.2015, 48, 3053–3063.

    CAS  Google Scholar 

  51. Liu, J. J.; Lyu, P. B.; Zhang, Y.; Nachtigall, P.; Xu, Y. X. New layered triazine framework/exfoliated 2D polymer with superior sodium-storage properties. Adv. Mater.2018, 30, 1705401.

    Google Scholar 

  52. Kissel, P.; Murray, D. J.; Wulftange, W. J.; Catalano, V. J.; King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem.2014, 6, 774–778.

    CAS  Google Scholar 

  53. Chen, Z. H.; Chen, J. D.; Bu, F. X.; Agboola, P. O.; Shakir, I.; Xu, Y. X. Double-holey-heterostructure frameworks enable fast, stable, and simultaneous ultrahigh gravimetric, areal, and volumetric lithium storage. ACS Nano2018, 12, 12879–12887.

    CAS  Google Scholar 

  54. Chen, X.; Zhang, X. Q.; Li, H. R.; Zhang, Q. Cation-solvent, cation-anion, and solvent-solvent interactions with electrolyte solvation in lithium batteries. Batter. Supercaps2019, 2, 128–131.

    CAS  Google Scholar 

  55. Cui, Y.; Zhou, X. W.; Guo, W.; Liu, Y. Z.; Li, T. Y.; Fu, Y. Z.; Zhu, L. K. Selenium nanocomposite cathode with long cycle life for rechargeable lithium-selenium batteries. Batter. Supercaps2019, 2, 784–791.

    CAS  Google Scholar 

  56. Zhao, W. J.; Mu, X. W.; He, P.; Zhou, H. S. Advances and challenges for aprotic lithium-oxygen batteries using redox mediators. Batter. Supercaps2019, 2, 803–819.

    Google Scholar 

  57. Hong, Y. S.; Zhao, C. Z.; Xiao, Y.; Xu, R.; Xu, J. J.; Huang, J. Q.; Zhang, Q.; Yu, X. Q.; Li, H. Safe lithium-metal anodes for Li-O2 batteries: From fundamental chemistry to advanced characterization and effective protection. Batter. Supercaps2019, 2, 638–658.

    CAS  Google Scholar 

  58. Zhang, X.; Chen, A.; Jiao, M. G.; Xie, Z. J.; Zhou, Z. Understanding rechargeable Li-O2 batteries via first-principles computations. Batter. Supercaps2019, 2, 498–508.

    CAS  Google Scholar 

  59. Yin, D. D.; Zhao, H. Y.; Li, N.; Si, R.; Sun, X. L.; Li, X. H.; Du, Y. P. Enhancing the rate capability of niobium oxide electrode through rare-earth doping engineering. Batter. Supercaps2019, 2, 924–928.

    CAS  Google Scholar 

  60. Chen, Z. H.; An, X. H.; Dai, L. M.; Xu, Y. X. Holey graphene-based nanocomposites for efficient electrochemical energy storage. Nano Energy2020, 73, 104762.

    CAS  Google Scholar 

  61. Yan, B.; Chen, Z. H.; Xu, Y. X. Amorphous and crystalline 2D polymeric carbon nitride nanosheets for photocatalytic hydrogen/oxygen evolution and hydrogen peroxide production. Chem.—Asian J., in press, https://doi.org/10.1002/asia.202000253.

  62. Bai, L. Y.; Gao, Q.; Zhao, Y. L. Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. J. Mater. Chem. A2016, 4, 14106–14110.

    CAS  Google Scholar 

  63. Yang, H.; Zhang, S. L.; Han, L. H.; Zhang, Z.; Xue, Z.; Gao, J.; Li, Y. J.; Huang, C. S.; Yi, Y. P.; Liu, H. B. et al. High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces2016, 8, 5366–5375.

    CAS  Google Scholar 

  64. Huang, L.; Cao, G. Y. 2D squaraine-linked polymers with high lithium storage capacity using the first principle methods. ChemistrySelect2017, 2, 1728–1733.

    CAS  Google Scholar 

  65. Wang, S.; Wang, Q. Y.; Shao, P. P.; Han, Y. Z.; Gao, X.; Ma, L.; Yuan, S.; Ma, X. J.; Zhou, J. W.; Feng, X. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc.2017, 139, 4258–4261.

    CAS  Google Scholar 

  66. Xu, F.; Jin, S. B.; Zhong, H.; Wu, D. C.; Yang, X. Q.; Chen, X.; Wei, H.; Fu, R. W.; Jiang, D. L. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci. Rep.2015, 5, 8225.

    CAS  Google Scholar 

  67. Chen, Z. H.; Li, S.; Zhao, Y.; Aboud, M. F. A.; Shakir, I.; Xu, Y. X. Ultrafine FeS2 nanocrystals/porous nitrogen-doped carbon hybrid nanospheres encapsulated in three-dimensional graphene for simultaneous efficient lithium and sodium ion storage. J. Mater. Chem. A2019, 7, 26342–26350.

    CAS  Google Scholar 

  68. Lang, J. H.; Li, J. R.; Zhang, F.; Ding, X.; Zapien, J. A.; Tang, Y. B. Sodium-ion hybrid battery combining an anion-intercalation cathode with an adsorption-type anode for enhanced rate and cycling performance. Batter. Supercaps2019, 2, 440–447.

    CAS  Google Scholar 

  69. Zhao, S.; Qin, B.; Chan, K. Y.; Li, C. Y. V.; Li, F. J. Recent development of aprotic Na-O2 batteries. Batter. Supercaps2019, 2, 725–742.

    Google Scholar 

  70. Liu, W.; Luo, X.; Bao, Y.; Liu, Y. P.; Ning, G. H.; Abdelwahab, I.; Li, L. J.; Nai, C. T.; Hu, Z. G.; Zhao, D. et al. A two-dimensional conjugated aromatic polymer via C-C coupling reaction. Nat. Chem.2017, 9, 563–570.

    CAS  Google Scholar 

  71. Duan, H. Y.; Lyu, P. B.; Liu, J. J.; Zhao, Y. L.; Xu, Y. X. Semiconducting crystalline two-dimensional polyimide nanosheets with superior sodium storage properties. ACS Nano2019, 13, 2473–2480.

    CAS  Google Scholar 

  72. Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed.2014, 53, 1488–1504.

    CAS  Google Scholar 

  73. Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev.2016, 45, 5925–5950.

    CAS  Google Scholar 

  74. Sun, J. F.; Guo, L. Z.; Sun, X.; Zhang, J. Y.; Hou, L. R.; Li, L.; Yang, S. H.; Yuan, C. Z. One-dimensional nanostructured pseudocapacitive materials: Design, synthesis and applications in supercapacitors. Batter. Supercaps2019, 2, 820–841.

    CAS  Google Scholar 

  75. Xu, F.; Xu, H.; Chen, X.; Wu, D. C.; Wu, Y.; Liu, H.; Gu, C.; Fu, R. W.; Jiang, D. L. Radical covalent organic frameworks: A general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angew. Chem., Int. Ed.2015, 54, 6814–6818.

    CAS  Google Scholar 

  76. Raza, W.; Ali, F.; Raza, N.; Luo, Y. W.; Kim, K. H.; Yang, J. H.; Kumar, S.; Mehmood, A.; Kwon, E. E. Recent advancements in supercapacitor technology. Nano Energy2018, 52, 441–473.

    CAS  Google Scholar 

  77. DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruña, H. D.; Dichtel, W. R. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc.2013, 135, 16821–16824.

    CAS  Google Scholar 

  78. Khattak, A. M.; Ghazi, Z. A.; Liang, B.; Khan, N. A.; Iqbal, A.; Li, L. S.; Tang, Z. Y. A redox-active 2D covalent organic framework with pyridine moieties capable of faradaic energy storage. J. Mater. Chem. A2016, 4, 16312–16317.

    CAS  Google Scholar 

  79. Chandra, S.; Chowdhury, D. R.; Addicoat, M.; Heine, T.; Paul, A.; Banerjee, R. Molecular level control of the capacitance of two-dimensional covalent organic frameworks: Role of hydrogen bonding in energy storage materials. Chem. Mater.2017, 29, 2074–2080.

    CAS  Google Scholar 

  80. DeBlase, C. R.; Hernández-Burgos, K.; Silberstein, K. E.; Rodríguez-Calero, G. G.; Bisbey, R. P.; Abruña, H. D.; Dichtel, W. R. Rapid and efficient redox processes within 2D covalent organic framework thin films. ACS Nano2015, 9, 3178–3183.

    CAS  Google Scholar 

  81. Yusran, Y.; Li, H.; Guan, X. Y.; Li, D. H.; Tang, L. X.; Xue, M.; Zhuang, Z. B.; Yan, Y. S.; Valtchev, V.; Qiu, S. L. et al. Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors. Adv. Mater.2020, 32, 1907289.

    CAS  Google Scholar 

  82. Jing, S. Y.; Zhang, L. S.; Luo, L.; Lu, J. J.; Yin, S. B.; Shen, P. K.; Tsiakaras, P. N-Doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl. Catal. B Environ.2018, 224, 533–540.

    CAS  Google Scholar 

  83. Bhunia, S.; Das, S. K.; Jana, R.; Peter, S. C.; Bhattacharya, S.; Addicoat, M.; Bhaumik, A.; Pradhan, A. Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework. ACS Appl. Mater. Interfaces2017, 9, 23843–23851.

    CAS  Google Scholar 

  84. Patra, B. C.; Khilari, S.; Manna, R. N.; Mondal, S.; Pradhan, D.; Pradhan, A.; Bhaumik, A. A metal-free covalent organic polymer for electrocatalytic hydrogen evolution. ACS Catal.2017, 7, 6120–6127.

    CAS  Google Scholar 

  85. Dong, R. H.; Pfeffermann, M.; Liang, H. W.; Zheng, Z. K.; Zhu, X.; Zhang, J.; Feng, X. L. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed.2015, 54, 12058–12063.

    CAS  Google Scholar 

  86. Sahabudeen, H.; Qi, H. Y.; Glatz, B. A.; Tranca, D.; Dong, R. H.; Hou, Y.; Zhang, T.; Kuttner, C.; Lehnert, T.; Seifert, G. et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun.2016, 7, 13461.

    CAS  Google Scholar 

  87. Wang, L.; Zhang, Y.; Chen, L.; Xu, H. X.; Xiong, Y. J. 2D polymers as emerging materials for photocatalytic overall water splitting. Adv. Mater.2018, 30, 1801955

    Google Scholar 

  88. Vyas, V. S.; Lau, V. W. H.; Lotsch, B. V. Soft photocatalysis: Organic polymers for solar fuel production. Chem. Mater.2016, 28, 5191–5204.

    CAS  Google Scholar 

  89. Zhang, X. L.; Wang, L.; Chen, L.; Ma, X. Y.; Xu, H. X. Ultrathin 2D conjugated polymer nanosheets for solar fuel generation. Chin. J. Polym. Sci.2019, 37, 101–114.

    CAS  Google Scholar 

  90. Eisenberg, R.; Gray, H. B. Preface on making oxygen. Inorg. Chem.2008, 47, 1697–1699.

    CAS  Google Scholar 

  91. Wang, L.; Wan, Y. Y.; Ding, Y. J.; Niu, Y. C.; Xiong, Y. J.; Wu, X. J.; Xu, H. X. Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: A combined first-principles calculation and experimental study. Nanoscale2017, 9, 4090–4096.

    CAS  Google Scholar 

  92. Wang, L.; Wan, Y. Y.; Ding, Y. J.; Wu, S. K.; Zhang, Y.; Zhang, X. L.; Zhang, G. Q.; Xiong, Y. J.; Wu, X. J.; Yang, J. L. et al. X. Conjugated microporous polymer nanosheets for overall water splitting using visible light. Adv. Mater.2017, 29, 1702428.

    Google Scholar 

  93. Wang, L.; Zheng, X. S.; Chen, L.; Xiong, Y. J.; Xu, H. X. van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting. Angew. Chem., Int. Ed.2018, 57, 3454–3458.

    CAS  Google Scholar 

  94. Chen, Y.; Jia, G.; Hu, Y. F.; Fan, G. Z.; Tsang, Y. H.; Li, Z. S.; Zou, Z. G. Two-dimensional nanomaterials for photocatalytic CO2 reduction to solar fuels. Sustainable Energy Fuels2017, 1, 1875–1898.

    CAS  Google Scholar 

  95. Hasani, A.; Tekalgne, M.; Van Le, Q.; Jang, H. W.; Kim, S. Y. Two-dimensional materials as catalysts for solar fuels: Hydrogen evolution reaction and CO2 reduction. J. Mater. Chem. A2019, 7, 430–454

    CAS  Google Scholar 

  96. Qin, J. N.; Wang, S. B.; Ren, H.; Hou, Y. D.; Wang, X. C. Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl. Catal. B Environ.2015, 179, 1–8.

    CAS  Google Scholar 

  97. Zhou, M.; Wang, S. B.; Yang, P. J.; Luo, Z. S.; Yuan, R. S.; Asiri, A. M.; Wakeel, M.; Wang, X. C. Layered heterostructures of ultrathin polymeric carbon nitride and ZnIn2S4 nanosheets for photocatalytic CO2 reduction. Chem.—Eur. J.2018, 24, 18529–18534.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support by the National Natural Science Foundation of China (Nos. 51873039 and 51673042), the Young Elite Scientist Sponsorship Program by CAST (No. 2017QNRC001), and the fund for post-doctoral program of Henan University to Z. H. C. (No. FJ3050A0670001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengbing Yu, Zhonghui Chen or Yuxi Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Yu, C., Chen, Z. et al. Two-dimensional polymer nanosheets for efficient energy storage and conversion. Nano Res. 14, 2023–2036 (2021). https://doi.org/10.1007/s12274-020-2976-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2976-5

Keywords

Navigation