Skip to main content
Log in

High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free Zn-ion battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To conquer severe dendrites formation and side reactions of zinc metal anodes, which are serious obstacles for the practical applications of aqueous zinc ion battery (ZIB), herein, we develop a sodium allysulfonate (SAS) and acrylamide (AM) copolymer by radical polymerization process (crosslinking of C=C) as solid-state electrolyte. The interface kinetics is improved remarkably due to the high adhesion and excellent ion transferability of AM-SAS (AS) copolymers. Especially the sulfonic acid group in the hydrogel electrolyte can enhance the internal ionic conductivity effectively benefiting from its high affinity to Zn2+. Also, polymer chains realize re-regulation to Zn2+ flow in atomic-scale, thus leading to controllable deposition of Zn onto the dendrite-free Zn anodes. Consequently, the AS-1.5 electrolyte achieves ultra-stable Zn deposition/stripping behaviors with the lifespan over 1,000 h via the suppression of side-reactions and paralleled Zn deposition. High performances of Zn/Mn-doped V2O5 (MnVO) (over 500 cycles) and Zn/diquinoxalino [2,3-a:2′,3′-c] phenazine (HATN) (over 2,500 cycles) full cells demonstrate that the AS hydrogel electrolyte is a common approach for ZIBs under various conditions. This molecular regulation engineering opens a novel route for hydrogel electrolyte fabrication, where sulfonic groups perform as media of Zn2+ transfer. Therefore, high bulk ionic conductivity as well as excellent interface ion diffusion ability is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng, J. X.; Zhao, Q.; Tang, T.; Yin, J. F.; Quilty, C. D.; Renderos, G. D.; Liu, X. T.; Deng, Y.; Wang, L.; Bock, D. C. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019, 366, 645–648.

    Article  CAS  Google Scholar 

  2. Parker, J. F.; Chervin, C. N.; Pala, I. R.; Machler, M.; Burz, M. F.; Long, J. W.; Rolison, D. R. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science 2017, 356, 415–418.

    Article  CAS  Google Scholar 

  3. Wu, X. K.; Wang, Z. C.; Zhang, D.; Qin, Y. N.; Wang, M. H.; Han, Y.; Zhan, T. R.; Yang, B.; Li, S. X.; Lai, J. P. et al. Solvent-free microwave synthesis of ultra-small Ru-Mo2C@CNT with strong metal-support interaction for industrial hydrogen evolution. Nat. Commun. 2021, 12, 4018.

    Article  CAS  Google Scholar 

  4. Tian, Y.; An, Y. L.; Wei, C. L.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 2019, 13, 11676–11685.

    Article  CAS  Google Scholar 

  5. Liu, F.; Chen, Z. X.; Fang, G. Z.; Wang, Z. Q.; Cai, Y. S.; Tang, B. Y.; Zhou, J.; Liang, S. Q. V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode. Nano-Micro Lett. 2019, 11, 25.

    Article  CAS  Google Scholar 

  6. Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

    Article  CAS  Google Scholar 

  7. Li, C. X.; Hou, C. C.; Chen, L. Y.; Kaskel, S.; Xu, Q. Rechargeable Al-ion batteries. EnergyChem 2021, 3, 100049.

    Article  CAS  Google Scholar 

  8. Kang, Z.; Wu, C. L.; Dong, L. B.; Liu, W. B.; Mou, J.; Zhang, J. W.; Chang, Z. W.; Jiang, B. Z.; Wang, G. X.; Kang, F. Y. et al. 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustainable Chem. Eng. 2019, 7, 3364–3371.

    Article  CAS  Google Scholar 

  9. Li, C. P.; Xie, X. S.; Liu, H.; Wang, P. J.; Deng, C. B.; Lu, B. A.; Zhou, J.; Liang, S. Q. Integrated “all-in-one” strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 2022, 9, nwab177.

    Article  CAS  Google Scholar 

  10. Bin, D. S.; Chi, Z. X.; Li, Y. T.; Zhang, K.; Yang, X. Z.; Sun, Y. G.; Piao, J. Y.; Cao, A. M.; Wan, L. J. Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres. J. Am. Chem. Soc. 2017, 139, 13492–13498.

    Article  CAS  Google Scholar 

  11. Wang, R. T.; Lang, J. W.; Zhang, P.; Lin, Z. Y.; Yan, X. B. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv. Funct. Mater. 2015, 25, 2270–2278.

    Article  CAS  Google Scholar 

  12. Fan, L.; Hu, Y. Y.; Rao, A. M.; Zhou, J.; Hou, Z. H.; Wang, C. X.; Lu, B. G. Prospects of electrode materials and electrolytes for practical potassium-based batteries. Small Methods 2021, 5, 2101131.

    Article  CAS  Google Scholar 

  13. Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res. 2020, 13, 215–224.

    Article  CAS  Google Scholar 

  14. Li, C. X.; Dong, S. H.; Tang, R.; Ge, X. L.; Zhang, Z. W.; Wang, C. X.; Lu, Y. P.; Yin, L. W. Heteroatomic interface engineering in MOF-derived carbon heterostructures with built-in electric-field effects for high performance Al-ion batteries. Energy Environ. Sci. 2018, 11, 3201–3211.

    Article  CAS  Google Scholar 

  15. Zhang, X. T.; Li, J. X.; Liu, D. Y.; Liu, M. K.; Zhou, T. S.; Qi, K. W.; Shi, L.; Zhu, Y. C.; Qian, Y. T. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 2021, 14, 3120–3129.

    Article  CAS  Google Scholar 

  16. Deng, C. B.; Xie, X. S.; Han, J. W.; Tang, Y.; Gao, J. W.; Liu, C. X.; Shi, X. D.; Zhou, J.; Liang, S. Q. A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 2020, 30, 2000599.

    Article  CAS  Google Scholar 

  17. Ge, J. M.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B. A. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustainable 2022, 5, 225–234.

    Article  Google Scholar 

  18. Yang, H. J.; Qiao, Y.; Chang, Z.; Deng, H.; Zhu, X. Y.; Zhu, R. J.; Xiong, Z. T.; He, P.; Zhou, H. S. Reducing water activity by zeolite molecular sieve membrane for long-life rechargeable zinc battery. Adv. Mater. 2021, 33, 2102415.

    Article  CAS  Google Scholar 

  19. Naveed, A.; Yang, H. J.; Yang, J.; Nuli, Y.; Wang, J. L. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem., Int. Ed. 2019, 58, 2760–2764.

    Article  CAS  Google Scholar 

  20. Huang, C.; Zhao, X.; Liu, S.; Hao, Y. S.; Tang, Q. L.; Hu, A. P.; Liu, Z. X.; Chen, X. H. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 2021, 33, 2100445.

    Article  CAS  Google Scholar 

  21. Hao, J. N.; Long, J.; Li, B.; Li, X. L.; Zhang, S. L.; Yang, F. H.; Zeng, X. H.; Yang, Z. H.; Pang, W. K.; Guo, Z. P. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv. Funct. Mater. 2019, 29, 1903605.

    Article  Google Scholar 

  22. Bayaguud, A.; Luo, X.; Fu, Y. P.; Zhu, C. B. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 2020, 5, 3012–3020.

    Article  CAS  Google Scholar 

  23. Ghavami, R. K.; Rafiei, Z. Performance improvements of alkaline batteries by studying the effects of different kinds of surfactant and different derivatives of benzene on the electrochemical properties of electrolytic zinc. J. Power Sources 2006, 162, 893–899.

    Article  CAS  Google Scholar 

  24. Liu, Z. X.; Yang, Y. Q.; Liang, S. Q.; Lu, B. A.; Zhou, J. pH-buffer contained electrolyte for self-adjusted cathode-free Zn-MnO2 batteries with coexistence of dual mechanisms. Small Struct. 2021, 2, 2100119.

    Article  CAS  Google Scholar 

  25. Liu, P. G.; Gao, Y.; Tan, Y. Y.; Liu, W. F.; Huang, Y. P.; Yan, J.; Liu, K. Y. Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Res. 2019, 12, 2835–2841.

    Article  CAS  Google Scholar 

  26. Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

    Article  CAS  Google Scholar 

  27. Zhao, J. W.; Zhang, J.; Yang, W. H.; Chen, B. B.; Zhao, Z. M.; Qiu, H. Y.; Dong, S. M.; Zhou, X. H.; Cui, G. L.; Chen, L. Q. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 2019, 57, 625–634.

    Article  CAS  Google Scholar 

  28. Ma, L. T.; Chen, S. M.; Li, N.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Chen, S. M.; Fan, J.; Zhi, C. Y. Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 2020, 32, 1908121.

    Article  CAS  Google Scholar 

  29. Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951.

    Article  CAS  Google Scholar 

  30. Mo, F. N.; Liang, G. J.; Meng, Q. Q.; Liu, Z. X.; Li, H. F.; Fan, J.; Zhi, C. Y. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °C. Energy Environ. Sci. 2019, 12, 706–715.

    Article  CAS  Google Scholar 

  31. Chen, Z.; Li, X. L.; Wang, D. H.; Yang, Q.; Ma, L. T.; Huang, Z. D.; Liang, G. J.; Chen, A.; Guo, Y.; Dong, B. B. et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ. Sci. 2021, 14, 3492–3501.

    Article  CAS  Google Scholar 

  32. Cong, J. L.; Shen, X.; Wen, Z. P.; Wang, X.; Peng, L. Q.; Zeng, J.; Zhao, J. B. Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte. Energy Storage Mater. 2021, 35, 586–594.

    Article  Google Scholar 

  33. Huang, Y.; Zhang, J. Y.; Liu, J. W.; Li, Z. X.; Jin, S. Y.; Li, Z. G.; Zhang, S. D.; Zhou, H. Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Mater. Today Energy 2019, 14, 100349.

    Article  Google Scholar 

  34. Wu, K.; Huang, J. H.; Yi, J.; Liu, X. Y.; Liu, Y. Y.; Wang, Y. G.; Zhang, J. J.; Xia, Y. Y. Recent advances in polymer electrolytes for zinc ion batteries: Mechanisms, properties, and perspectives. Adv. Energy Mater. 2020, 10, 1903977.

    Article  CAS  Google Scholar 

  35. Wang, D. H.; Li, H. F.; Liu, Z. X.; Tang, Z. J.; Liang, G. J.; Mo, F. N.; Yang, Q.; Ma, L. T.; Zhi, C. Y. A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable highperformance Zn-MnO2 battery with superior shear resistance. Small 2018, 14, 1803978.

    Article  Google Scholar 

  36. Tang, Y.; Liu, C. X.; Zhu, H. R.; Xie, X. S.; Gao, J. W.; Deng, C. B.; Han, M. M.; Liang, S. Q.; Zhou, J. Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 2020, 27, 109–116.

    Article  Google Scholar 

  37. Chan, C. Y.; Wang, Z. Q.; Li, Y. L.; Yu, H.; Fei, B.; Xin, J. H. Single-ion conducting double-network hydrogel electrolytes for long cycling zinc-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 30594–30602.

    Article  CAS  Google Scholar 

  38. Ma, L. T.; Chen, S. M.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zapien, J. A.; Zhi, C. Y. Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano 2018, 12, 8597–8605.

    Article  CAS  Google Scholar 

  39. Hao, S. W.; Meng, L.; Fu, Q. J.; Xu, F.; Yang, J. Low-temperature tolerance and conformal adhesion zwitterionic hydrogels as electronic skin for strain and temperature responsiveness. Chem. Eng. J. 2022, 431, 133782.

    Article  CAS  Google Scholar 

  40. Hao, Y.; Feng, D. D.; Hou, L.; Li, T. Y.; Jiao, Y. C.; Wu, P. Y. Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode. Adv. Sci. 2022, 9, 2104832.

    Article  CAS  Google Scholar 

  41. Huang, S. W.; Hou, L.; Li, T. Y.; Jiao, Y. C.; Wu, P. Y. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater., in press, https://doi.org/10.1002/adma.202110140.

  42. Zhang, B.; Qin, L.; Fang, Y.; Chai, Y.; Xie, X.; Lu, B.; Liang, S.; Zhou, J. Tuning Zn2+ coordination tunnel by hierarchical gel electrolyte for dendrite-free zinc anode. Sci. Bull. 2022, 67, 955–962.

    Article  CAS  Google Scholar 

  43. Lu, H. Y.; Hu, J. S.; Wang, L. T.; Li, J. Z.; Ma, X.; Zhu, Z. C.; Li, H. Q.; Zhao, Y. J.; Li, Y. J.; Zhao, J. X. et al. Multi-component crosslinked hydrogel electrolyte toward dendrite-free aqueous Zn ion batteries with high temperature adaptability. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202112540.

  44. Gaikwad, A. M.; Zamarayeva, A. M.; Rousseau, J.; Chu, H.; Derin, I.; Steingart, D. A. Highly stretchable alkaline batteries based on an embedded conductive fabric. Adv. Mater. 2012, 24, 5071–5076.

    Article  CAS  Google Scholar 

  45. Huang, S.; Wan, F.; Bi, S. S.; Zhu, J. C.; Niu, Z. Q.; Chen, J. A self-healing integrated all-in-one zinc-ion battery. Angew. Chem., Int. Ed. 2019, 58, 4313–4317.

    Article  CAS  Google Scholar 

  46. Huang, Y.; Liu, J. W.; Zhang, J. Y.; Jin, S. Y.; Jiang, Y. X.; Zhang, S. D.; Li, Z. G.; Zhi, C. Y.; Du, G. Q.; Zhou, H. Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan biopolymer electrolyte. RSC Adv. 2019, 9, 16313–16319.

    Article  CAS  Google Scholar 

  47. Leng, K. T.; Li, G. J.; Guo, J. J.; Zhang, X. Y.; Wang, A. X.; Liu, X. J.; Luo, J. Y. A safe polyzwitterionic hydrogel electrolyte for longlife quasi-solid state zinc metal batteries. Adv. Funct. Mater. 2020, 30, 2001317.

    Article  CAS  Google Scholar 

  48. Cummins, C.; Lundy, R.; Walsh, J. J.; Ponsinet, V.; Fleury, G.; Morris, M. A. Enabling future nanomanufacturing through block copolymer self-assembly: A review. Nano Today 2020, 35, 100936.

    Article  CAS  Google Scholar 

  49. Tie, Z.; Liu, L.; Deng, S.; Zhao, D.; Niu, Z. Proton insertion chemistry of a zinc-organic battery. Angew. Chem., Int. Ed. 2020, 59, 4920–4924.

    Article  CAS  Google Scholar 

  50. Chen, P.; Yuan, X. H.; Xia, Y. B.; Zhang, Y.; Fu, L. J.; Liu, L. L.; Yu, N. F.; Huang, Q. H.; Wang, B.; Hu, X. W. et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 2021, 8, 2100309.

    Article  CAS  Google Scholar 

  51. Li, H. F.; Liu, Z. X.; Liang, G. J.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Tang, Z. J.; Wang, Y. K. et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 2018, 12, 3140–3148.

    Article  CAS  Google Scholar 

  52. Lu, Y. Y.; Zhu, T. Y.; Xu, N. S.; Huang, K. A semisolid electrolyte for flexible Zn-ion batteries. ACS Appl. Energy Mater. 2019, 2, 6904–6910.

    Article  CAS  Google Scholar 

  53. Kim, J.; Zhang, G. G.; Shi, M. X. Z.; Suo, Z. G. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 2021, 374, 212–216.

    Article  CAS  Google Scholar 

  54. Zhang, Q.; Luan, J. Y.; Huang, X. B.; Wang, Q.; Sun, D.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 2020, 11, 3961.

    Article  CAS  Google Scholar 

  55. Hu, L. F.; Wu, Z. Y.; Lu, C. J.; Ye, F.; Liu, Q.; Sun, Z. M. Principles of interlayer-spacing regulation of layered vanadium phosphates for superior zinc-ion batteries. Energy Environ. Sci. 2021, 14, 4095–4106.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51802171 and 52072197), Outstanding Youth Foundation of Shandong Province, China (No. ZR2019JQ14), Taishan Scholar Young Talent Program (No. tsqn201909114), and Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2020ZD09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caixia Li or Lei Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ren, J., Li, C. et al. High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free Zn-ion battery. Nano Res. 15, 7190–7198 (2022). https://doi.org/10.1007/s12274-022-4370-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4370-y

Keywords

Navigation