Skip to main content
Log in

Surface-targeted functionalization of nickel-rich cathodes through synergistic slurry additive approach with multi-level impact using minimal quantity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

LiNi0.8Co0.1Mn0.1O2 (NCM811), a Ni-rich layered oxide, is a promising cathode material for high-energy density lithium-ion batteries (LIBs). However, its structural instability, caused by adverse phase transitions and continuous oxygen release, as well as deteriorated interfacial stability due to excessive electrolyte oxidative decomposition, limits its widespread application. To address these issues, a new concept is proposed that surface targeted precise functionalization (STPF) of the NCM811 cathode using a synergistic slurry additive (SSA) approach. This approach involves coating the NCM811 particle surface with 3-aminopropyl dimethoxy methyl silane (3-ADMS), followed by the precise deposition of ascorbic acid via an acid-base interaction. The slurry additives induce the formation of an ultra-thin spinel surface layer and a stable cathode-electrolyte interface (CEI), which enhances the electrochemical kinetics and inhibits crack propagation. The STPF strategy implemented by the SSA approach significantly improves the cyclic stability and rate performance of the NCM811 cathode in both half-cell and full-cell configurations. This work establishes a promising strategy to enhance the structural stability and electrochemical performance of nickel-rich cathodes and provides a feasible route to promote practical applications of high-energy density lithium-ion battery technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, M.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. Adv. Energy Mater. 2021, 11, 2103005.

    Article  CAS  Google Scholar 

  2. Noh, H. J.; Youn, S.; Yoon, C. S.; Sun, Y. K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 2013, 233, 121–130.

    Article  CAS  Google Scholar 

  3. Xu, C.; Reeves, P. J.; Jacquet, Q.; Grey, C. P. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 2021, 11, 2003404.

    Article  CAS  Google Scholar 

  4. Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.

    Article  CAS  Google Scholar 

  5. Yan, P. F.; Zheng, J. M.; Liu, J.; Wang, B. Q.; Cheng, X. P.; Zhang, Y. F.; Sun, X. L.; Wang, C. M.; Zhang, J. G. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 2018, 3, 600–605.

    Article  CAS  Google Scholar 

  6. Han, J. G.; Hwang, C.; Kim, S. H.; Park, C.; Kim, J.; Jung, G. Y.; Baek, K.; Chae, S.; Kang, S. J.; Cho, J. et al. An antiaging electrolyte additive for high-energy-density lithium-ion batteries. Adv. Energy Mater. 2020, 10, 2000563.

    Article  CAS  Google Scholar 

  7. Zhang, W.; Sun, Y. G.; Deng, H. Q.; Ma, J. M.; Zeng, Y.; Zhu, Z. Q.; Lv, Z. S.; Xia, H. R.; Ge, X.; Cao, S. K. et al. Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of Li-rich cathode materials. Adv. Mater. 2020, 32, 2000496.

    Article  CAS  Google Scholar 

  8. Hu, E. Y.; Yu, X. Q.; Lin, R. Q.; Bi, X. X.; Lu, J.; Bak, S.; Nam, K. W.; Xin, H. L.; Jaye, C.; Fischer, D. A. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 2018, 3, 690–698.

    Article  CAS  Google Scholar 

  9. Yang, S. Y.; Shadike, Z.; Wang, W. W.; Yue, X. Y.; Xia, H. Y.; Bak, S. M.; Du, Y. H.; Li, H.; Fu, Z. W. An ultrathin solid-state electrolyte film coated on LiNi0.8Co0.1Mn0.1O2 electrode surface for enhanced performance of lithium-ion batteries. Energy Storage Mater. 2022, 45, 1165–1174.

    Article  Google Scholar 

  10. Hwang, J.; Do, K.; Ahn, H. Highly conductive 3D structural carbon network-encapsulated Ni-rich LiNi0.8Co0.1Mn0.1O2 as depolarized and passivated cathode for lithium-ion batteries. Chem. Eng. J. 2021, 406, 126813.

    Article  CAS  Google Scholar 

  11. Zhu, T.; Liu, G. Q.; Chen, D. L.; Chen, J. X.; Qi, P.; Sun, J.; Gu, X. Y.; Zhang, S. Constructing flame-retardant gel polymer electrolytes via multiscale free radical annihilating agents for Ni-rich lithium batteries. Energy Storage Mater. 2022, 50, 495–504.

    Article  Google Scholar 

  12. Chen, Y. Q.; He, Q.; Mo, Y.; Zhou, W.; Zhao, Y.; Piao, N.; Liu, C.; Xiao, P. T.; Liu, H.; Li, B. H. et al. Engineering an insoluble cathode electrolyte interphase enabling high performance NCM811//graphite pouch cell at 60 °C. Adv. Energy Mater. 2022, 12, 2201631.

    Article  CAS  Google Scholar 

  13. Wu, F.; Li, W. K.; Chen, L.; Su, Y. F.; Bao, L. Y.; Bao, W.; Yang, Z. L.; Wang, J.; Lu, Y.; Chen, S. Renovating the electrode–electrolyte interphase for layered lithium- & manganese-rich oxides. Energy Storage Mater. 2020, 28, 383–392.

    Article  Google Scholar 

  14. Wei, H. X.; Tang, L. B.; Huang, Y. D.; Wang, Z. Y.; Luo, Y. H.; He, Z. J.; Yan, C.; Mao, J.; Dai, K. H.; Zheng, J. C. Comprehensive understanding of Li/Ni intermixing in layered transition metal oxides. Mater. Today 2021, 51, 365–392.

    Article  CAS  Google Scholar 

  15. Zheng, J. X.; Ye, Y. K.; Liu, T. C.; Xiao, Y. G.; Wang, C. M.; Wang, F.; Pan, F. Ni/Li disordering in layered transition metal oxide: Electrochemical impact, origin, and control. Acc. Chem. Res. 2019, 52, 2201–2209.

    Article  CAS  Google Scholar 

  16. Zhang, M. J.; Li, Z. B.; Yu, L.; Kong, D. F.; Li, Y. W.; Cao, B.; Zhao, W. G.; Wen, J. G.; Pan, F. Enhanced long-term cyclability in Li-rich layered oxides by electrochemically constructing a LixTM3−xO4-type spinel shell. Nano Energy 2020, 77, 105188.

    Article  CAS  Google Scholar 

  17. Ku, L.; Cai, Y. X.; Ma, Y. T.; Zheng, H. F.; Liu, P. F.; Qiao, Z. S.; Xie, Q. S.; Wang, L. S.; Peng, D. L. Enhanced electrochemical performances of layered-spinel heterostructured lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. Chem. Eng. J. 2019, 370, 499–507.

    Article  Google Scholar 

  18. Zheng, Y.; Chen, L.; Su, Y. F.; Tan, J.; Bao, L. Y.; Lu, Y.; Wang, J.; Chen, R. J.; Chen, S.; Wu, F. An interfacial framework for breaking through the Li-ion transport barrier of Li-rich layered cathode materials. J. Mater. Chem. A 2017, 5, 24292–24298.

    Article  CAS  Google Scholar 

  19. Pham, H. Q.; Mirolo, M.; Tarik, M.; El Kazzi, M.; Trabesinger, S. Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells. Energy Storage Mater. 2020, 33, 216–229.

    Article  Google Scholar 

  20. Kim, S. Y.; Park, C. S.; Hosseini, S.; Lampert, J.; Kim, Y. J.; Nazar, L. F. Inhibiting oxygen release from Li-rich, Mn-rich layered oxides at the surface with a solution processable oxygen scavenger polymer. Adv. Energy Mater. 2021, 11, 2100552.

    Article  CAS  Google Scholar 

  21. Höweling, A.; Glatthaar, S.; Nötzel, D.; Binder, J. R. Evidence of loss of active lithium in titanium-doped LiNi0.5Mn1.5O4/graphite cells. J. Power Sources 2015, 274, 1267–1275.

    Article  Google Scholar 

  22. Pieczonka, N. P. W.; Borgel, V.; Ziv, B.; Leifer, N.; Dargel, V.; Aurbach, D.; Kim, J. H.; Liu, Z. Y.; Huang, X. S.; Krachkovskiy, S. A. et al. Lithium polyacrylate (LiPAA) as an advanced binder and a passivating agent for high-voltage Li-ion batteries. Adv. Energy Mater. 2015, 5, 1501008.

    Article  Google Scholar 

  23. Yan, P. F.; Zheng, J. M.; Tang, Z. K.; Devaraj, A.; Chen, G. Y.; Amine, K.; Zhang, J. G.; Liu, L. M.; Wang, C. M. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 2019, 14, 602–608.

    Article  CAS  Google Scholar 

  24. Guo, F. Y.; Xie, Y. F.; Zhang, Y. X. Tuning Li-excess to optimize Ni/Li exchange and improve stability of structure in LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Nano Res. 2022, 15, 8962–8971.

    Article  CAS  Google Scholar 

  25. Guo, Z. Y.; Zhang, X. S.; Wang, M. Y.; Shi, S. Q.; Cheng, Y. J.; Xia, Y. G. Protective and ion conductive: High-rate Ni-rich cathode with enhanced cyclic stability via one-step bifunctional dual-layer coating. Chem. Eng. J. 2022, 431, 134031.

    Article  CAS  Google Scholar 

  26. Park, K. J.; Jung, H. G.; Kuo, L. Y.; Kaghazchi, P.; Yoon, C. S.; Sun, Y. K. Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through microstructure modification by boron doping for Li-ion batteries. Adv. Energy Mater. 2018, 8, 1801202.

    Article  Google Scholar 

  27. Lai, Y. J.; Li, Z. J.; Zhao, W. X.; Cheng, X. N.; Xu, S.; Yu, X.; Liu, Y. An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries. Nano Res. 2020, 13, 3347–3357.

    Article  CAS  Google Scholar 

  28. Wu, K.; Li, Q.; Dang, R. B.; Deng, X.; Chen, M. M.; Lee, Y. L.; Xiao, X. L.; Hu, Z. B. A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2 at high cut-off voltages through core–shell structuring. Nano Res. 2019, 12, 2460–2467.

    Article  CAS  Google Scholar 

  29. Yan, P. F.; Zheng, J. M.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 2017, 8, 14101.

    Article  CAS  Google Scholar 

  30. Zheng, J. M.; Yan, P. F.; Estevez, L.; Wang, C. M.; Zhang, J. G. Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries. Nano Energy 2018, 49, 538–548.

    Article  CAS  Google Scholar 

  31. Guo, F. Y.; Xie, Y. F.; Zhang, Y. X. Low-temperature strategy to synthesize single-crystal LiNi0.8Co0.1Mn0.1O2 with enhanced cycling performances as cathode material for lithium-ion batteries. Nano Res. 2022, 15, 2052–2059.

    Article  CAS  Google Scholar 

  32. Pham, H. Q.; Kim, G.; Jung, H. M.; Song, S. W. Fluorinated polyimide as a novel high-voltage binder for high-capacity cathode of lithium-ion batteries. Adv. Funct. Mater. 2018, 28, 1704690.

    Article  Google Scholar 

  33. Nayak, P. K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, J. W.; Aurbach, D. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv. Energy Mater. 2016, 6, 1502398.

    Article  Google Scholar 

  34. Lee, Y. H.; Min, J.; Lee, K.; Kim, S.; Park, S. H.; Choi, J. W. Low molecular weight spandex as a promising polymeric binder for LiFePO4 electrodes. Adv. Energy Mater. 2017, 7, 1602147.

    Article  Google Scholar 

  35. Liang, J. Y.; Zhang, X. D.; Zeng, X. X.; Yan, M.; Yin, Y. X.; Xin, S.; Wang, W. P.; Wu, X. W.; Shi, J. L.; Wan, L. J. et al. Enabling a durable electrochemical interface via an artificial amorphous cathode electrolyte interphase for hybrid solid/liquid lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 6585–6589.

    Article  CAS  Google Scholar 

  36. Mu, P. Z.; Zhang, H. R.; Jiang, H. Z.; Dong, T. T.; Zhang, S.; Wang, C.; Li, J. D.; Ma, Y.; Dong, S. M.; Cui, G. L. Bioinspired antiaging binder additive addressing the challenge of chemical degradation of electrolyte at cathode/electrolyte interphase. J. Am. Chem. Soc. 2021, 143, 18041–18051.

    Article  CAS  Google Scholar 

  37. Tang, Y. X.; Deng, J. Y.; Li, W. L.; Malyi, O. I.; Zhang, Y. Y.; Zhou, X. R.; Pan, S. W.; Wei, J. Q.; Cai, Y. R.; Chen, Z. et al. Water-soluble sericin protein enabling stable solid-electrolyte interphase for fast charging high voltage battery electrode. Adv. Mater. 2017, 29, 1701828.

    Article  Google Scholar 

  38. Fan, J. J.; Dai, P.; Shi, C. G.; Wen, Y. F.; Luo, C. X.; Yang, J.; Song, C.; Huang, L.; Sun, S. G. Synergistic dual-additive electrolyte for interphase modification to boost cyclability of layered cathode for sodium ion batteries. Adv Funct Mater. 2021, 31, 2010500.

    Article  CAS  Google Scholar 

  39. Wang, Y. J.; Cai, S. R.; Sun, Z. Q.; Hou, Q.; Huang, H. H.; Cheng, J. C.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. An active-oxygen-scavenging oriented cathode-electrolyte-interphase for long-life lithium-rich cathode materials. Small 2022, 18, 2106072.

    Article  CAS  Google Scholar 

  40. Dong, Y. N.; Demeaux, J.; Zhang, Y. Z.; Lucht, B. L. Improving the performance of graphite/LiNi05Mn15O4 cells with added N, N-dimethylformamide sulfur trioxide complex. J. Electrochem. Soc. 2017, 164, A3182–A3190.

    Article  CAS  Google Scholar 

  41. Shi, X. T.; Zheng, T. L.; Xiong, J. W.; Zhu, B. Y.; Cheng, Y. J.; Xia, Y. G. Stable electrode/electrolyte interface for high-voltage NCM 523 cathode constructed by synergistic positive and passive approaches. ACS Appl. Mater. Interfaces 2021, 13, 57107–57117.

    Article  CAS  Google Scholar 

  42. Rong, H. B.; Xu, M. Q.; Zhu, Y. M.; Xie, B. Y.; Lin, H. B.; Liao, Y. H.; Xing, L. D.; Li, W. S. A novel imidazole-based electrolyte additive for improved electrochemical performance of high voltage nickel-rich cathode coupled with graphite anode lithium ion battery. J. Power Sources 2016, 332, 312–321.

    Article  CAS  Google Scholar 

  43. Zhang, J. N.; Li, Q. H.; Wang, Y.; Zheng, J. Y.; Yu, X. Q.; Li, H. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 2018, 14, 1–7.

    Article  Google Scholar 

  44. Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T. C.; Asta, M. D.; Xin, H. L.; Doeff, M. M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 2014, 5, 3529.

    Article  Google Scholar 

  45. Wu, Z. S.; Xue, L. L.; Ren, W. C.; Li, F.; Wen, L.; Cheng, H. M. A LiF nanoparticle-modified graphene electrode for high-power and high-energy lithium ion batteries. Adv Funct Mater. 2012, 22, 3290–3297.

    Article  CAS  Google Scholar 

  46. Hong, J.; Lim, H. D.; Lee, M.; Kim, S. W.; Kim, H.; Oh, S. T.; Chung, G. C.; Kang, K. Critical role of oxygen evolved from layered Li-excess metal oxides in lithium rechargeable batteries. Chem. Mater. 2012, 24, 2692–2697.

    Article  CAS  Google Scholar 

  47. Chen, Z.; Kim, G. T.; Chao, D. L.; Loeffler, N.; Copley, M.; Lin, J. Y.; Shen, Z. X.; Passerini, S. Toward greener lithium-ion batteries: Aqueous binder-based LiNi0.4Co0.2Mn0.4O2 cathode material with superior electrochemical performance. J. Power Sources 2017, 372, 180–187.

    Article  CAS  Google Scholar 

  48. Kuenzel, M.; Bresser, D.; Kim, G. T.; Axmann, P.; Wohlfahrt-Mehrens, M.; Passerini, S. Unveiling and amplifying the benefits of carbon-coated aluminum current collectors for sustainable LiNi05Mn15O4 cathodes. ACS Appl. Energy Mater. 2020, 3, 218–230.

    Article  CAS  Google Scholar 

  49. Qian, R. C.; Liu, Y. L.; Cheng, T.; Li, P. P.; Chen, R. M.; Lyu, Y.; Guo, B. K. Enhanced surface chemical and structural stability of Ni-rich cathode materials by synchronous lithium-ion conductor coating for lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 13813–13823.

    Article  CAS  Google Scholar 

  50. Li, L. J.; Fu, L. Z.; Li, M.; Wang, C.; Zhao, Z. X.; Xie, S. C.; Lin, H. C.; Wu, X. W.; Liu, H. D.; Zhang, L. et al. B-doped and La4NiLiO8-coated Ni-rich cathode with enhanced structural and interfacial stability for lithium-ion batteries. J. Energy Chem. 2022, 71, 588–594.

    Article  CAS  Google Scholar 

  51. Wang, D. D.; Liu, H. D.; Li, M. Q.; Xia, D. W.; Holoubek, J.; Deng, Z.; Yu, M. Y.; Tian, J. H.; Shan, Z. Q.; Ong, S. P. et al. A long-lasting dual-function electrolyte additive for stable lithium metal batteries. Nano Energy 2020, 75, 104889.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21965034, 52061135110, U1903217, 52162036, 22065033, 21905242, and 22075305), the Key Project of Nature Science Foundation of Xinjiang Province (No. 2021D01D08), the Xinjiang Autonomous Region Major Projects (Nos. 2022A01005-4 and 2021A01001-1), the Natural Science Foundation of Zhejiang Province (No. LD22E020003), the Ningbo Science & Technology Innovation 2025 Major Project (No. 2020Z024), the Foundation of State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resource (No. KFKT2022004), and Key Laboratory of Bio-based Polymeric Materials of Zhejiang Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Jun Cheng, Yonggao Xia or Yudai Huang.

Electronic Supplementary Material

12274_2023_5960_MOESM1_ESM.pdf

Surface-targeted functionalization of nickel-rich cathodes through synergistic slurry additive approach with multi-level impact using minimal quantity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, J., Cao, L. et al. Surface-targeted functionalization of nickel-rich cathodes through synergistic slurry additive approach with multi-level impact using minimal quantity. Nano Res. 17, 333–343 (2024). https://doi.org/10.1007/s12274-023-5960-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5960-z

Keywords

Navigation