Skip to main content
Log in

Kinetics process for structure-engineered integrated gradient porous paper-based supercapacitors with boosted electrochemical performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Due to their rich and adjustable porous network structure, paper-based functional materials have become a research hotspot in the field of energy storage. However, reasonably designing and making full use of the rich pore structure of paper-based materials to improve the electrochemical performance of paper-based energy storage devices still faces many challenges. Herein, we propose a structure engineering technique to develop a conductive integrated gradient porous paper-based (CIGPP) supercapacitor, and the kinetics process for the influence of gradient holes on the electrochemical performance of the CIGPP is investigated through experimental tests and COMSOL simulations. All results indicate that the gradient holes endow the CIGPP with an enhanced electrochemical performance. Specifically, the CIGPP shows a significant improvement in the specific capacitance, displays rich frequency response characteristics for electrolyte ions, and exhibits a good rate performance. Also, the CIGPP supercapacitor exhibits a low self-discharge and maintains a stable electrochemical performance in different electrolyte environments because of gradient holes. More importantly, when the CIGPP is used as a substrate to fabricate a CIGPP-PANI hybrid, it still maintains good electrochemical properties. In addition, the CIGPP supercapacitor also shows excellent stability and sensitivity for monitoring human motion and deaf-mute voicing, showing potential application prospects. This study provides a reference and feasible way for the design of structure-engineered integrated paper-based energy storage devices with outstanding comprehensive electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bi, Z. H.; Kong, Q. Q.; Cao, Y. F.; Sun, G. H.; Su, F. Y.; Wei, X. X.; Li, X. M.; Ahmad, A.; Xie, L. J.; Chen, C. M. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review. J. Mater. Chem. A 2019, 7, 16028–16045.

    Article  CAS  Google Scholar 

  2. Cheng, Y.; Xiao, X.; Pan, K. M.; Pang, H. Development and application of self-healing materials in smart batteries and supercapacitors. Chem. Eng. J. 2020, 380, 122565.

    Article  CAS  Google Scholar 

  3. Li, G. L.; Ren, M. Y.; Zhou, H. H. Observably boosted electrochemical performances of roughened graphite sheet/polyaniline electrodes for use in flexible supercapacitors. Surf. Interfaces 2022, 30, 101874.

    Article  CAS  Google Scholar 

  4. Jiang, S. H.; Ding, J.; Wang, R. H.; Chen, F. Y.; Sun, J.; Deng, Y. X.; Li, X. L. Solvothermal-induced construction of ultra-tiny Fe2O3 nanoparticles/graphene hydrogels as binder-free high-capacitance anode for supercapacitors. Rare Met. 2021, 40, 3520–3530.

    Article  CAS  Google Scholar 

  5. Xiong, C. Y.; Li, B. B.; Duan, C.; Dai, L.; Nie, S. X.; Qin, C. R.; Xu, Y. J.; Ni, Y. H. Carbonized wood cell chamber-reduced graphene oxide@PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications. Chem. Eng. J. 2021, 418, 129518.

    Article  CAS  Google Scholar 

  6. Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163.

    Article  CAS  Google Scholar 

  7. Xiong, C. Y.; Zheng, C. M.; Nie, S. X.; Qin, C. R.; Dai, L.; Xu, Y. J.; Ni, Y. H. Fabrication of reduced graphene oxide-cellulose nanofibers based hybrid film with good hydrophilicity and conductivity as electrodes of supercapacitor. Cellulose 2021, 28, 3733–3743.

    Article  CAS  Google Scholar 

  8. Liu, L.; Feng, Y.; Wu, W. Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. J. Power Sources 2019, 410-411, 69–77.

    Article  Google Scholar 

  9. Xiong, C. Y.; Wang, T. X.; Zhao, Z. Y.; Ni, Y. H. Recent progress in the development of smart supercapacitors. SmartMat 2022, 4, e1158.

    Article  Google Scholar 

  10. Sumboja, A.; Liu, J. W.; Zheng, G. Y.; Zong, Y.; Zhang, H.; Liu, Z. L. Electrochemical energy storage devices for wearable technology: A rationale for materials selection and cell design. Chem. Soc. Rev. 2018, 47, 5919–5945.

    Article  CAS  Google Scholar 

  11. Xiong, C. Y.; Wang, T. X.; Zhang, Y. K.; Li, B. B.; Han, Q.; Li, D. P.; Ni, Y. H. Li-Na metal compounds inserted into porous natural wood as a bifunctional hybrid applied in supercapacitors and electrocatalysis. Int. J. Hydrogen Energy 2022, 47, 2389–2398.

    Article  CAS  Google Scholar 

  12. Song, Z. Y.; Li, L. C.; Zhu, D. Z.; Miao, L.; Duan, H.; Wang, Z. W.; Xiong, W.; Lv, Y. K.; Liu, M. X.; Gan, L. H. Synergistic design of a N,O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density. J. Mater. Chem. A 2019, 7, 816–826.

    Article  CAS  Google Scholar 

  13. Xiong, C. Y.; Yang, Q.; Li, B. B.; Nie, S. X.; Qin, C. R.; Dai, L.; Khan, M.; Xu, Y. J.; Ni, Y. H. Carbonized porous wood as an effective scaffold for loading flower-like CoS, NiS nanofibers with Co, Ni nanoparticles served as electrode material for high-performance supercapacitors. Ind. Crops Prod. 2021, 167, 113545.

    Article  CAS  Google Scholar 

  14. Ren, Y. F.; He, Z. L.; Zhao, H. Z.; Zhu, T. Fabrication of MOF-derived mixed metal oxides with carbon residues for pseudocapacitors with long cycle life. Rare Met. 2022, 41, 830–835.

    Article  CAS  Google Scholar 

  15. Orangi, J.; Hamade, F.; Davis, V. A.; Beidaghi, M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 2020, 14, 640–650.

    Article  CAS  Google Scholar 

  16. Xiong, C. Y.; Yang, Q.; Dang, W. H.; Zhou, Q. S.; Jiang, X.; Sun, X. H.; Wang, Z. Q.; An, M.; Ni, Y. H. A multifunctional paper-based supercapacitor with excellent temperature adaptability, plasticity, tensile strength, self-healing, and high thermoelectric effects. J. Mater. Chem. A 2023, 11, 4769–4779.

    Article  CAS  Google Scholar 

  17. Han, L.; Huang, H. L.; Fu, X. B.; Li, J. F.; Yang, Z. L.; Liu, X. J.; Pan, L. K.; Xu, M. A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chem. Eng. J. 2020, 392, 123733.

    Article  CAS  Google Scholar 

  18. Pan, Z. H.; Yang, J.; Zhang, Q. C.; Liu, M. N.; Hu, Y. T.; Kou, Z. K.; Liu, N.; Yang, X.; Ding, X. Y.; Chen, H. et al. All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility. Adv. Energy Mater. 2019, 9, 1802753.

    Article  Google Scholar 

  19. Xiong, C. Y.; Zhang, Y. K.; Ni, Y. H. Recent progress on development of electrolyte and aerogel electrodes applied in supercapacitors. J. Power Sources 2023, 560, 232698.

    Article  CAS  Google Scholar 

  20. Du, X.; Zhang, Z.; Liu, W.; Deng, Y. L. Nanocellulose-based conductive materials and their emerging applications in energy devices —A review. Nano Energy 2017, 35, 299–320.

    Article  CAS  Google Scholar 

  21. Yuan, L. Y.; Xiao, X.; Ding, T. P.; Zhong, J. W.; Zhang, X. H.; Shen, Y.; Hu, B.; Huang, Y. H.; Zhou, J.; Wang, Z. L. Paper-based supercapacitors for self-powered nanosystems. Angew. Chem., Int. Ed. 2012, 51, 4934–4938.

    Article  CAS  Google Scholar 

  22. Xing, J. H.; Tao, P.; Wu, Z. M.; Xing, C. Y.; Liao, X. P.; Nie, S. X. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors. Carbohydr. Polym. 2019, 207, 447–459.

    Article  CAS  Google Scholar 

  23. Ko, Y.; Kwon, M.; Bae, W. K.; Lee, B.; Lee, S. W.; Cho, J. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat. Commun. 2017, 8, 536.

    Article  Google Scholar 

  24. Huang, L.; Chen, D. C.; Ding, Y.; Feng, S.; Wang, Z. L.; Liu, M. L. Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013, 13, 3135–3139.

    Article  CAS  Google Scholar 

  25. Jiao, S. Q.; Zhou, A. G.; Wu, M. Z.; Hu, H. B. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv. Sci. 2019, 6, 1900529.

    Article  Google Scholar 

  26. Zhang, Y. Z.; Wang, Y.; Cheng, T.; Lai, W. Y.; Pang, H.; Huang, W. Flexible supercapacitors based on paper substrates: A new paradigm for low-cost energy storage. Chem. Soc. Rev. 2015, 44, 5181–5199.

    Article  CAS  Google Scholar 

  27. Li, R. Z.; Peng, R.; Kihm, K. D.; Bai, S.; Bridges, D.; Tumuluri, U.; Wu, Z.; Zhang, T.; Compagnini, G.; Feng, Z. et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ. Sci. 2016, 9, 1458–1467.

    Article  CAS  Google Scholar 

  28. Xiong, C. Y.; Li, M. R.; Zhao, W.; Duan, C.; Dai, L.; Shen, M. X.; Xu, Y. J.; Ni, Y. H. A smart paper@polyaniline nanofibers incorporated vitrimer bifunctional device with reshaping, shape-memory and self-healing properties applied in high-performance supercapacitors and sensors. Chem. Eng. J. 2020, 396, 125318.

    Article  CAS  Google Scholar 

  29. Laheäär, A.; Przygocki, P.; Abbas, Q.; Béguin, F. Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem. Commun. 2015, 60, 21–25.

    Article  Google Scholar 

  30. Dickinson, E. J. F.; Ekström, H.; Fontes, E. COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review. Electrochem. Commun. 2014, 40, 71–74.

    Article  CAS  Google Scholar 

  31. Xiong, C. Y.; Li, M. R.; Han, Q.; Zhao, W.; Dai, L.; Ni, Y. H. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances. J. Mater. Sci. Technol. 2022, 97, 190–200.

    Article  CAS  Google Scholar 

  32. Xiong, C. Y.; Li, M. R.; Zhao, W.; Duan, C.; Ni, Y. H. Flexible N-doped reduced graphene oxide/carbon nanotube-MnO2 film as a multifunctional material for high-performance supercapacitors, catalysts, and sensors. J. Materiomics 2020, 6, 523–531.

    Article  Google Scholar 

  33. Xiong, C. Y.; Li, T. H.; Dang, A. L.; Zhao, T. K.; Li, H.; Lv, H. Q. Two-step approach of fabrication of three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor electrode. J. Power Sources 2016, 306, 602–610.

    Article  CAS  Google Scholar 

  34. Chen, S. P.; Wu, Q. N.; Wen, M.; Wu, Q. S.; Li, J. Q.; Cui, Y.; Pinna, N.; Fan, Y. F.; Wu, T. Sea-sponge-like structure of nano-Fe3O4 on skeleton-C with long cycle life under high rate for Li-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 19656–19663.

    Article  CAS  Google Scholar 

  35. Ning, J.; Xia, M. Y.; Wang, D.; Feng, X.; Zhou, H.; Zhang, J. C.; Hao, Y. Superior pseudocapacitive storage of a novel Ni3Si2/NiOOH/graphene nanostructure for an all-solid-state supercapacitor. Nano-Micro Lett. 2021, 13, 2.

    Article  Google Scholar 

  36. Rabani, I.; Yoo, J.; Bathula, C.; Hussain, S.; Seo, Y. S. The role of uniformly distributed ZnO nanoparticles on cellulose nanofibers in flexible solid state symmetric supercapacitors. J. Mater. Chem. A 2021, 9, 11580–11594.

    Article  CAS  Google Scholar 

  37. Sharma, K.; Pareek, K.; Rohan, R.; Kumar, P. Flexible supercapacitor based on three-dimensional cellulose/graphite/polyaniline composite. Int. J. Energy Res. 2019, 43, 604–611.

    Article  CAS  Google Scholar 

  38. Jiao, F.; Edberg, J.; Zhao, D.; Puzinas, S.; Khan, Z. U.; Mäkie, P.; Naderi, A.; Lindström, T.; Odén, M.; Engquist, I. et al. Nanofibrillated cellulose-based electrolyte and electrode for paper-based supercapacitors. Adv. Sustain. Syst. 2018, 2, 1700121.

    Article  Google Scholar 

  39. Service, R. F. New “supercapacitor” promises to pack more electrical punch. Science 2006, 313, 902.

    Article  CAS  Google Scholar 

  40. Zhang, W. Y.; Wang, Q. W.; Zeng, M.; Zhao, C. L. Thermoelectric effect and temperature-gradient-driven electrokinetic flow of electrolyte solutions in charged nanocapillaries. Int. J. Heat Mass Transf. 2019, 143, 118569.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the fund of the National Natural Science Foundation of China (Nos. 22078184 and 52006130), China Postdoctoral Science Foundation (No. 2019M653853XB), Opening Project of Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control (No. 2019KF21), Natural science advance research foundation of Shaanxi University of Science and Technology (No. 2018QNBJ-03), the Youth Innovation Team of Shaanxi Universities (No. 21JP017), and the Joint Research Funds of Department of Science and Technology of Shaanxi Province and Northwestern Polytechnical University (No. 2020GXLH-Z-025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanyin Xiong, Meng An or Junjie Mao.

Electronic Supplementary Material

12274_2023_5694_MOESM1_ESM.pdf

Kinetics process for structure-engineered integrated gradient porous paper-based supercapacitors with boosted electrochemical performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, C., Zhang, Y., Xu, J. et al. Kinetics process for structure-engineered integrated gradient porous paper-based supercapacitors with boosted electrochemical performance. Nano Res. 16, 9471–9479 (2023). https://doi.org/10.1007/s12274-023-5694-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5694-y

Keywords

Navigation