Skip to main content

Advertisement

Log in

Fabrication of MOF-derived mixed metal oxides with carbon residues for pseudocapacitors with long cycle life

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

High electroactivity and good mechanical robustness of electrode materials are essential to deliver excellent electrochemical energy storage performance. Herein, metal–organic frameworks (MOF) derived mixed metal oxides (MMO, ZnO@NiO and Co3O4@NiO) are prepared by a two-step annealing process in air. Zinc-based MOF (ZIF-8) and cobalt-based MOF (ZIF-67) were employed, respectively, as hard templates for the chemical encapsulation of Ni(OH)2 nanostructures by hydrothermal synthesis. The as-prepared ZIF-8@Ni(OH)2 and ZIF-67@Ni(OH)2 were then converted to corresponding MMO through annealing in air. Meanwhile, MOF-derived carbon was preserved in the as-fabricated MMO structure, thus improving the electronic conductivity as well as the mechanical stability of the materials. In virtue of these features, high specific capacitance of 1017 and 744 F·g−1 can be delivered at a current density of 1 A·g−1 for the Co3O4@NiO and ZnO@NiO samples, respectively. In addition, both of the samples have shown excellent cycling performance, which exhibited excellent capacitance retentions of 90.1% and 93.0% after 10,000 cycles for the Co3O4@NiO and ZnO@NiO samples, respectively, demonstrating their very promising use in next-generation pseudocapacitors.

Graphic abstract

摘要

高电化学活性和良好的机械性能是电极材料拥有优秀的电化学储能性能的关键。由此, 我们通过在空气中分级热处理制备了金属有机框架(MOF)衍生的混合金属氧化物(MMO, ZnO@NiO和Co3O4@NiO)。首先, 锌基MOF (ZIF-8)和钴基MOF (ZIF-67)分别作为硬模板, 通过水热法进行Ni(OH)2纳米片包覆得到前驱体。之后将制备的ZIF-8@Ni(OH)2和ZIF-67@Ni(OH)2在空气中退火后转化为相应的混合金属氧化物。同时, MOF衍生碳保留在制备的MMO结构中, 从而提高了材料的电导率和力学稳定性。基于这些特性, 在1 A·g−1的电流密度下, Co3O4@NiO和ZnO@NiO分别能够取得1017和744 F·g−1的高比容量。此外, 两种样品均表现出良好的循环性能, 在10000次循环后, Co3O4@NiO和ZnO@NiO的容量分别为90.1%和93.0%, 表明它们在下一代赝电容器中具有很好的应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science. 2002;295(5554):469.

    Article  CAS  Google Scholar 

  2. Zhang YB, Zhou HL, Lin RB, Zhang C, Lin JB, Zhang JP, Chen XM. Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology. Nat Commun. 2012;3:642.

    Article  Google Scholar 

  3. Guillerm V, Ragon F, Dan-Hardi M, Devic T, Vishnuvarthan M, Campo B, Vimont A, Clet G, Yang Q, Maurin G, Ferey G, Vittadini A, Gross S, Serre C. A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. Angew Chemie-Int Ed. 2012;51(37):9267.

    Article  CAS  Google Scholar 

  4. Wu HB, Lou XW. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv. 2017;3(12):eaap9252.

    Article  Google Scholar 

  5. Zhu JY, Liang F, Yao YC, Ma WH, Yang B. Preparation and application of metal organic frameworks derivatives in electro-catalysis. Chin J Rare Met. 2019;43(2):186.

    Google Scholar 

  6. Guan BY, Kushima A, Yu L, Li S, Li J, Lou XW. Coordination polymers derived general synthesis of multishelled mixed metal-oxide particles for hybrid supercapacitors. Adv Mater. 2017;29(17):1605902.

    Article  Google Scholar 

  7. Hu H, Zhang JT, Guan BY, Lou XW. Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew Chemie-Int Ed. 2016;55(33):9514.

    Article  CAS  Google Scholar 

  8. Wu HB, Xia BY, Yu L, Yu XY, Lou XW. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat Commun. 2015;6:6512.

    Article  CAS  Google Scholar 

  9. Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y. Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc. 2015;137(4):1572.

    Article  CAS  Google Scholar 

  10. Hu H, Guan BY, Xia BY, Lou XW. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J Am Chem Soc. 2015;137(16):5590.

    Article  CAS  Google Scholar 

  11. Guan BY, Yu XY, Wu HB, Lou XW. Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion. Adv Mater. 2017;29(47):1703614.

    Article  Google Scholar 

  12. Wang Q, Shang L, Sun-Waterhouse D, Zhang T, Waterhouse G. Engineering local coordination environments and site densities for high-performance Fe-N-C oxygen reduction reaction electrocatalysis. SmartMat. 2021;2:154.

    Article  Google Scholar 

  13. Miller JR, Simon P. Materials science—electrochemical capacitors for energy management. Science. 2008;321(5889):651.

    Article  CAS  Google Scholar 

  14. Hu LB, Chen W, Xie X, Liu NA, Yang Y, Wu H, Yao Y, Pasta M, Alshareef HN, Cui Y. Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. ACS Nano. 2011;5(11):8904.

    Article  CAS  Google Scholar 

  15. Liu JP, Jiang J, Cheng CW, Li HX, Zhang JX, Gong H, Fan HJ. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater. 2011;23(18):2076.

    Article  CAS  Google Scholar 

  16. Chen LF, Huang ZH, Liang HW, Guan QF, Yu SH. Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv Mater. 2013;25(34):4746.

    Article  CAS  Google Scholar 

  17. Chun SE, Evanko B, Wang XF, Vonlanthen D, Ji XL, Stucky GD, Boettcher SW. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nat Commun. 2015;6:7818.

    Article  CAS  Google Scholar 

  18. Zuo WH, Li RZ, Zhou C, Li YY, Xia JL, Liu JP. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci. 2017;4(7):1600539.

    Article  Google Scholar 

  19. Wang T, Chen HC, Yu F, Zhao XS, Wang HX. Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 2019;16:545.

    Article  Google Scholar 

  20. Bretos I, Jimenez R, Ricote J, Calzada ML. Low-temperature crystallization of solution-derived metal oxide thin films assisted by chemical processes. Chem Soc Rev. 2018;47(2):291.

    Article  CAS  Google Scholar 

  21. Kumar S, Pandit V, Bhattacharyya K, Krishnan V. Sunlight driven photocatalytic reduction of 4-nitrophenol on Pt decorated ZnO-RGO nanoheterostructures. Mater Chem Phys. 2018;214:364.

    Article  CAS  Google Scholar 

  22. Li GF, Chuang PYA. Identifying the forefront of electrocatalytic oxygen evolution reaction: electronic double layer. Appl Catal B-Environ. 2018;239:425.

    Article  CAS  Google Scholar 

  23. He F, Liu KY, Zhong JJ, Zhang SR, Huang Q, Chen C. One dimensional nickel oxide-decorated cobalt oxide (Co3O4) composites for high-performance supercapacitors. J Electroanal Chem. 2015;749:89.

    Article  CAS  Google Scholar 

  24. Yang ZH, Xu FF, Zhang WX, Mei ZS, Pei B, Zhu X. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. J Power Sources. 2014;246:24.

    Article  CAS  Google Scholar 

  25. Guo X, Yan K, Fan F, Zhang Y, Duan Y, Liu J. Controllable synthesis of a NiO hierarchical microspheres/nanofibers composites assembled on nickel foam for supercapacitor. Mater Lett. 2019;240:62.

    Article  CAS  Google Scholar 

  26. Huang C, Hao C, Ye Z, Zhou S, Wang X, Zhu L, Wu J. In situ growth of ZIF-8-derived ternary ZnO/ZnCo2O4/NiO for high performance asymmetric supercapacitors. Nanoscale. 2019;11(20):10114.

    Article  CAS  Google Scholar 

  27. He W, Liang Z, Ji K, Sun Q, Zhai T, Xu X. Hierarchical Ni-Co-S@Ni-W-O core–shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors. Nano Res. 2018;11(3):1415.

    Article  CAS  Google Scholar 

  28. Chu M, Wang L, Li X, Hou M, Li N, Dong Y, Li X, Xie Z, Lin Y, Cai W, Zhang C. Carbon coated nickel-nickel oxide composites as a highly efficient catalyst for hydrogen evolution reaction in acid medium. Electrochim Acta. 2018;264:284.

    Article  CAS  Google Scholar 

  29. Cao F, Zhao M, Yu Y, Chen B, Huang Y, Yang J, Cao X, Lu Q, Zhang X, Zhang Z, Tan C, Zhang H. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J Am Chem Soc. 2016;138(22):6924.

    Article  CAS  Google Scholar 

  30. Ning WW, Chen LB, Wei WF, Chen YJ, Zhang XY. NiCoO2/NiCoP@Ni nanowire arrays: tunable composition and unique structure design for high-performance winding asymmetric hybrid supercapacitors. Rare Met. 2020;39(9):1034.

    Article  CAS  Google Scholar 

  31. Zhou WW, Kong DZ, Jia XT, Ding CY, Cheng CW, Wen GW. NiCo2O4 nanosheet supported hierarchical core-shell arrays for high-performance supercapacitors. J Mater Chem A. 2014;2(18):6310.

    Article  CAS  Google Scholar 

  32. Guan C, Liu X, Ren W, Li X, Cheng C, Wang J. Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv Energy Mater. 2017;7(12):1602391.

    Article  Google Scholar 

  33. Zhao XX, Feng JR, Liu JW, Lu J, Shi W, Yang GM, Wang GC, Feng PY, Cheng P. Metal-organic framework-derived ZnO/ZnS heteronanostructures for efficient visible-light-driven photocatalytic hydrogen production. Adv Sci. 2018;5(4):9.

    Google Scholar 

  34. Hao ZB, He XC, Li HD, Trefilov D, Song YY, Li Y, Fu XX, Cui YS, Tang SC, Ge HX, Chen YF. Vertically aligned and ordered arrays of 2D MCo2S4@metal with ultrafast ion/electron transport for thickness-independent pseudocapacitive energy storage. ACS Nano. 2020;14(10):12719.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Start-Up Grant of Central South University (No. 202045001), the Innovation-Driven Project of Central South University (No. 2019CX028) and Huxiang Assembly Program for High-level Talents (No. 2018RS3018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, YF., He, ZL., Zhao, HZ. et al. Fabrication of MOF-derived mixed metal oxides with carbon residues for pseudocapacitors with long cycle life. Rare Met. 41, 830–835 (2022). https://doi.org/10.1007/s12598-021-01836-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01836-8

Navigation