Skip to main content
Log in

Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rapid development of miniaturized, highly integrated, and multifunctional modern electronic devices has generated a growing demand for anisotropic heat dissipation in polymer nanocomposites for thermal management applications. These anisotropic thermally conductive multifunctional polymer nanocomposites use bio-inspired structural design based on natural nacre, which is the gold standard for biomimetics. However, to date, a comprehensive review and critique on the highly-anisotropic thermal conduction of nacre-mimetic nanocomposites is nonexistent. As such, this extensive review of the nacre-inspired highly anisotropic thermal management nanocomposites summarizes the current design strategies, and explains the thermal conduction mechanisms, and factors affecting anisotropic thermal conductivity. Furthermore, the practical applications of the as-prepared nacre-inspired highly anisotropic nanocomposites are highlighted. Finally, the key challenges and potential solution strategies associated with these nacre-inspired highly anisotropic nanocomposites are discussed and outlooks for future research opportunities are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, F.; Feng, Y. Y.; Feng, W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Mater. Sci. Eng.:R:Rep. 2020, 142, 100580.

    Article  Google Scholar 

  2. Tan, M. Y.; Chen, D. M.; Cheng, Y.; Sun, H. Q.; Chen, G. Q.; Dong, S.; Zhao, G. D.; Sun, B. Q.; Wu, S. Q.; Zhang, W. Z. et al. Anisotropically oriented carbon films with dual-function of efficient heat dissipation and excellent electromagnetic interference shielding performances. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202202057.

  3. Wang, D.; Ren, S. Y.; Chen, J. Y.; Li, Y. K.; Wang, Z. F.; Xu, J. H.; Jia, X.; Fu, J. J. Healable, highly thermal conductive, flexible polymer composite with excellent mechanical properties and multiple functionalities. Chem. Eng. J. 2022, 430, 133163.

    Article  CAS  Google Scholar 

  4. Song, H. F.; Liu, J. M.; Liu, B. L.; Wu, J. Q.; Cheng, H. M.; Kang, F. Y. Two-dimensional materials for thermal management applications. Joule 2018, 2, 442–463.

    Article  CAS  Google Scholar 

  5. Morishita, T.; Matsushita, M. Ultra-highly electrically insulating carbon materials and their use for thermally conductive and electrically insulating polymer composites. Carbon 2021, 184, 786–798.

    Article  CAS  Google Scholar 

  6. Hong, H.; Jung, Y. H.; Lee, J. S.; Jeong, C.; Kim, J. U.; Lee, S.; Ryu, H.; Kim, H.; Ma, Z. Q.; Kim, T. I. Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv. Funct. Mater. 2019, 29, 1902575.

    Article  Google Scholar 

  7. Han, J. K.; Du, G. L.; Gao, W. W.; Bai, H. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater. 2019, 29, 1900412.

    Article  Google Scholar 

  8. Azizi, A.; Gadinski, M. R.; Li, Q.; AlSaud, M. A.; Wang, J. J.; Wang, Y.; Wang, B.; Liu, F. H.; Chen, L. Q.; Alem, N. et al. Highperformance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 2017, 29, 1701864.

    Article  Google Scholar 

  9. Zeng, X. L.; Sun, J. J.; Yao, Y. M.; Sun, R.; Xu, J. B.; Wong, C. P. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 2017, 11, 5167–5178.

    Article  CAS  Google Scholar 

  10. Huang, C. L.; Qian, X.; Yang, R. G. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng.:R:Rep. 2018, 132, 1–22.

    Article  Google Scholar 

  11. Meng, X. G.; Yu, H. J.; Wang, L.; Wu, X. D.; Amin, B. U. Recent progress on fabrication and performance of polymer composites with highly thermal conductivity. Macromol. Mater. Eng. 2021, 306, 2100434.

    Article  CAS  Google Scholar 

  12. Huang, X. Y.; Zhi, C. Y.; Lin, Y.; Bao, H.; Wu, G. N.; Jiang, P. K.; Mai, Y. W. Thermal conductivity of graphene-based polymer nanocomposites. Mater. Sci. Eng.:R:Rep. 2020, 142, 100577.

    Article  Google Scholar 

  13. Li, H.; Zhao, J. Z.; Wang, J. F. Total-conversion, high-concentration exfoliation of two-dimensional boron nitride by paste-based sand milling strategy for massively producing highperformance nanocomposites. Compos. Sci. Technol. 2021, 201, 108545.

    Article  CAS  Google Scholar 

  14. Shen, X.; Zheng, Q. B.; Kim, J. K. Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 2021, 115, 100708.

    Article  CAS  Google Scholar 

  15. Wang, J. F.; Shen, M. M.; Liu, Z. X.; Wang, W. J. Mxene materials for advanced thermal management and thermal energy utilization. Nano Energy 2022, 97, 107177.

    Article  CAS  Google Scholar 

  16. Yang, G.; Zhang, X. D.; Pan, D.; Zhang, W.; Shang, Y.; Su, F. M.; Ji, Y. X.; Liu, C. T.; Shen, C. Y. Highly thermal conductive poly(vinyl alcohol) composites with oriented hybrid networks: Silver nanowire bridged boron nitride nanoplatelets. ACS Appl. Mater. Interfaces 2021, 13, 32286–32294.

    Article  CAS  Google Scholar 

  17. Yu, H. T.; Guo, P. L.; Qin, M. M.; Han, G. Y.; Chen, L.; Feng, Y. Y.; Feng, W. Highly thermally conductive polymer composite enhanced by two-level adjustable boron nitride network with leaf venation structure. Compos. Sci. Technol. 2022, 222, 109406.

    Article  CAS  Google Scholar 

  18. Chen, Q.; Wang, Z. Z. A copper organic phosphonate functionalizing boron nitride nanosheet for PVA film with excellent flame retardancy and improved thermal conductive property. Compos. Part A: Appl. Sci. Manuf. 2022, 153, 106738.

    Article  CAS  Google Scholar 

  19. Chen, H. Y.; Ginzburg, V. V.; Yang, J.; Yang, Y. F.; Liu, W.; Huang, Y.; Du, L. B.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85.

    Article  CAS  Google Scholar 

  20. Leung, S. N. Thermally conductive polymer composites and nanocomposites: Processing-structure-property relationships. Compos. Part B: Eng. 2018, 150, 78–92.

    Article  CAS  Google Scholar 

  21. Ding, D. L.; Huang, R. Y.; Wang, X.; Zhang, S. Y.; Wu, Y.; Zhang, X. A.; Qin, G. Z.; Liu, Z. G.; Zhang, Q. Y.; Chen, Y. H. Thermally conductive silicone rubber composites with vertically oriented carbon fibers: A new perspective on the heat conduction mechanism. Chem. Eng. J. 2022, 441, 136104.

    Article  CAS  Google Scholar 

  22. Fan, L.; Zhang, S.; Zhao, G. J.; Fu, Q. Constructing fibrillated skeleton with highly aligned boron nitride nanosheets confined in alumina fiber via electrospinning and sintering for thermally conductive composite. Compos. Part A: Appl. Sci. Manuf. 2021, 143, 106282.

    Article  CAS  Google Scholar 

  23. Gu, J. W.; Ruan, K. P. Breaking through bottlenecks for thermally conductive polymer composites: A perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 2021, 13, 110.

    Article  CAS  Google Scholar 

  24. Zhou, X. N.; Xu, S. S.; Wang, Z. Y.; Hao, L. C.; Shi, Z. Q.; Zhao, J. P.; Zhang, Q. G.; Ishizaki, K.; Wang, B.; Yang, J. F. Wood-derived, vertically aligned, and densely interconnected 3D sic frameworks for anisotropically highly thermoconductive polymer composites. Adv. Sci. 2022, 9, 2103592.

    Article  CAS  Google Scholar 

  25. Jiang, F.; Song, N.; Ouyang, R. H.; Ding, P. Wall density-controlled thermal conductive and mechanical properties of three-dimensional vertically aligned boron nitride network-based polymeric composites. ACS Appl. Mater. Interfaces 2021, 13, 7556–7566.

    Article  CAS  Google Scholar 

  26. Ma, Z. W.; Zhang, J. Z.; Maluk, C.; Yu, Y. M.; Seraji, S. M.; Yu, B.; Wang, H.; Song, P. A. A lava-inspired micro/nano-structured ceramifiable organic-inorganic hybrid fire-extinguishing coating. Matter 2022, 5, 911–932.

    Article  CAS  Google Scholar 

  27. Hu, D. C.; Liu, H. Q.; Ding, Y.; Ma, W. S. Synergetic integration of thermal conductivity and flame resistance in nacre-like nanocellulose composites. Carbohydr. Polym. 2021, 264, 118058.

    Article  CAS  Google Scholar 

  28. Zhao, H. W.; Yang, Z.; Guo, L. Nacre-inspired composites with different macroscopic dimensions: Strategies for improved mechanical performance and applications. NPG Asia Mater. 2018, 10, 1–22.

    Article  Google Scholar 

  29. Yaraghi, N. A.; Kisailus, D. Biomimetic structural materials: Inspiration from design and assembly. Annu. Rev. Phys. Chem. 2018, 69, 23–57.

    Article  CAS  Google Scholar 

  30. Wegst, U. G. K; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

    Article  CAS  Google Scholar 

  31. Li, X. D.; Xu, Z. H.; Wang, R. Z. In situ observation of nanograin rotation and deformation in nacre. Nano Lett. 2006, 6, 2301–2304.

    Article  CAS  Google Scholar 

  32. Song, F.; Soh, A. K.; Bai, Y. L. Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 2003, 24, 3623–3631.

    Article  CAS  Google Scholar 

  33. Meyers, M. A.; Chen, P. Y.; Lin, A. Y. M.; Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1–206.

    Article  CAS  Google Scholar 

  34. Rabiei, R.; Bekah, S.; Barthelat, F. Failure mode transition in nacre and bone-like materials. Acta Biomater. 2010, 6, 4081–4089.

    Article  CAS  Google Scholar 

  35. Wang, Y.; Yuan, H.; Ma, P. M.; Bai, H. Y.; Chen, M. Q.; Dong, W. F.; Xie, Y.; Deshmukh, Y. S. Superior performance of artificial nacre based on graphene oxide nanosheets. ACS Appl. Mater. Interfaces 2017, 9, 4215–4222.

    Article  CAS  Google Scholar 

  36. Meyers, M. A.; Mckittrick, J.; Chen, P. Y. Structural biological materials: Critical mechanics-materials connections. Science 2013, 339, 773–779.

    Article  CAS  Google Scholar 

  37. Wang, Z. G.; Chen, M. Z.; Liu, Y. H.; Duan, H. J.; Xu, L.; Zhou, L.; Xu, J. Z.; Lei, J.; Li, Z. M. Nacre-like composite films with high thermal conductivity, flexibility, and solvent stability for thermal management applications. J. Mater. Chem. C 2019, 7, 9018–9024.

    Article  CAS  Google Scholar 

  38. He, G. S.; Li, X.; Dai, Y.; Yang, Z. J.; Zeng, C. C.; Lin, C. M.; He, S. W. Constructing bioinspired hierarchical structure in polymer based energetic composites with superior thermal conductivity. Compos. Part B: Eng. 2019, 162, 678–684.

    Article  CAS  Google Scholar 

  39. Shi, A.; Li, Y.; Liu, W.; Xu, J. Z.; Yan, D. X.; Lei, J.; Li, Z. M. Highly thermally conductive and mechanically robust composite of linear ultrahigh molecular weight polyethylene and boron nitride via constructing nacre-like structure. Compos. Sci. Technol. 2019, 184, 107858.

    Article  CAS  Google Scholar 

  40. Xu, X. F.; Chen, J.; Zhou, J.; Li, B. W. Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 2018, 30, 1705544.

    Article  Google Scholar 

  41. Xu, Y. F.; Wang, X. J.; Hao, Q. A mini review on thermally conductive polymers and polymer-based composites. Compos. Commun. 2021, 24, 100617.

    Article  Google Scholar 

  42. Kim, H. S.; Jang, J. U.; Lee, H.; Kim, S. Y.; Kim, S. H.; Kim, J.; Jung, Y. C.; Yang, B. J. Thermal management in polymer composites: A review of physical and structural parameters. Adv. Eng. Mater. 2018, 20, 1800204.

    Article  Google Scholar 

  43. Nan, C. W.; Birringer, R.; Clarke, D. R.; Gleiter, H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 1997, 81, 6692–6699.

    Article  CAS  Google Scholar 

  44. Foygel, M.; Morris, R. D.; Anez, D.; French, S.; Sobolev, V. L. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity. Phys. Rev. B 2005, 71, 104201.

    Article  Google Scholar 

  45. Lewis, T. B.; Nielsen, L. E. Dynamic mechanical properties of particulate-filled composites. J. Appl. Polym. Sci. 1970, 14, 1449–1471.

    Article  CAS  Google Scholar 

  46. Hatta, H.; Taya, M.; Kulacki, F. A.; Harder, J. F. Thermal diffusivities of composites with various types of filler. J. Compos. Mater. 1992, 26, 612–625.

    Article  CAS  Google Scholar 

  47. Lin, Z. Y.; Liu, Y.; Raghavan, S.; Moon, K. S.; Sitaraman, S. K.; Wong, C. P. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: Toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl. Mater. Interfaces 2013, 5, 7633–7640.

    Article  CAS  Google Scholar 

  48. Yuan, J.; Qian, X. T; Meng, Z. C.; Yang, B.; Liu, Z. Q. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation. ACS Appl. Mater. Interfaces 2019, 11, 17915–17924.

    Article  CAS  Google Scholar 

  49. Yang, S. D.; Xue, B.; Li, Y.; Li, X. J.; Xie, L.; Qin, S. H.; Xu, K. H.; Zheng, Q. Controllable Ag-rGO heterostructure for highly thermal conductivity in layer-by-layer nanocellulose hybrid films. Chem. Eng. J. 2020, 383, 123072.

    Article  CAS  Google Scholar 

  50. Lee, T.; Min, S. H.; Gu, M. S.; Jung, Y. K.; Lee, W.; Lee, J. U.; Seong, D. G.; Kim, B. S. Layer-by-layer assembly for graphene-based multilayer nanocomposites: Synthesis and applications. Chem. Mater. 2015, 27, 3785–3796.

    Article  CAS  Google Scholar 

  51. Joshi, B.; Samuel, E.; Kim, Y. I.; Yarin, A. L.; Swihart, M. T.; Yoon, S. S. Electrostatically sprayed nanostructured electrodes for energy conversion and storage devices. Adv. Funct. Mater. 2021, 31, 2008181.

    Article  CAS  Google Scholar 

  52. Shi, A.; Li, Y.; Liu, W.; Lei, J.; Li, Z. M. High thermal conductivity of chain-aligned bulk linear ultra-high molecular weight polyethylene. J. Appl. Phys. 2019, 125, 245110.

    Article  Google Scholar 

  53. Valino, A. D.; Dizon, J. R. C.; Espera, A. H. Jr.; Chen, Q. Y.; Messman, J.; Advincula, R. C. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Polym. Sci. 2019, 98, 101162.

    Article  CAS  Google Scholar 

  54. Bao, D.; Gao, Y. Y.; Cui, Y. X.; Xu, F.; Shen, X. S.; Geng, H. L.; Zhang, X. G.; Lin, D.; Zhu, Y. J.; Wang, H. Y. A novel modified expanded graphite/epoxy 3D composite with ultrahigh thermal conductivity. Chem. Eng. J. 2022, 433, 133519.

    Article  CAS  Google Scholar 

  55. Vu, M. C.; Park, P. J.; Bae, S. R.; Kim, S. Y.; Kang, Y. M.; Choi, W. K.; Islam, A.; Won, J. C.; Park, M.; Kim, S. R. Scalable ultrarobust thermoconductive nonflammable bioinspired papers of graphene nanoplatelet crosslinked aramid nanofibers for thermal management and electromagnetic shielding. J. Mater. Chem. A 2021, 9, 8527–8540.

    Article  CAS  Google Scholar 

  56. Wang, Y. J.; Xia, S.; Li, H.; Wang, J. F. Unprecedentedly tough, folding-endurance, and multifunctional graphene-based artificial nacre with predesigned 3D nanofiber network as matrix. Adv. Funct. Mater. 2019, 29, 1903876.

    Article  Google Scholar 

  57. Zhang, X. L.; Xu, Y.; Zhang, X.; Wu, H.; Shen, J. B.; Chen, R.; Xiong, Y.; Li, J.; Guo, S. Y. Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and applications. Prog. Polym. Sci. 2019, 89, 76–107.

    Article  CAS  Google Scholar 

  58. Lee, S.; Yeom, B.; Kim, Y.; Cho, J. Layer-by-layer assembly for ultrathin energy-harvesting films: Piezoelectric and triboelectric nanocomposite films. Nano Energy 2019, 56, 1–15.

    Article  CAS  Google Scholar 

  59. Xiao, F. X.; Pagliaro, M.; Xu, Y. J.; Liu, B. Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: A new perspective for rational construction of multilayer assemblies. Chem. Soc. Rev. 2016, 45, 3088–3121.

    Article  CAS  Google Scholar 

  60. Li, Y.; Wang, X.; Sun, J. Q. Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chem. Soc. Rev. 2012, 41, 5998–6009.

    Article  CAS  Google Scholar 

  61. Zhang, S. W.; Xia, F.; Demoustier-Champagne, S.; Jonas, A. M. Layer-by-layer assembly in nanochannels: Assembly mechanism and applications. Nanoscale 2021, 13, 7471–7497.

    Article  CAS  Google Scholar 

  62. Richardson, J. J.; Björnmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348, aaa2491.

    Article  Google Scholar 

  63. Chen, Q.; Ma, Z. W.; Wang, Z. Z.; Liu, L.; Zhu, M. H.; Lei, W. W.; Song, P. A. Scalable, robust, low-cost, and highly thermally conductive anisotropic nanocomposite films for safe and efficient thermal management. Adv. Funct. Mater. 2022, 32, 2110782.

    Article  CAS  Google Scholar 

  64. Zhou, S. S.; Xu, T. L.; Jin, L. Y.; Song, N.; Ding, P. Ultraflexible polyamide-imide films with simultaneously improved thermal conductive and mechanical properties: Design of assembled well-oriented boron nitride nanosheets. Compos. Sci. Technol. 2022, 219, 109259.

    Article  CAS  Google Scholar 

  65. Guo, Y. Q.; Qiu, H.; Ruan, K. P.;, Zhang, Y. L.; Gu, J. W. Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 2022, 14, 26.

    Article  CAS  Google Scholar 

  66. Zhou, B.; Li, Q. T.; Xu, P. H.; Feng, Y. Z.; Ma, J. M.; Liu, C. T.; Shen, C. Y. An asymmetric sandwich structural cellulose-based film with self-supported MXene and AgNW layers for flexible electromagnetic interference shielding and thermal management. Nanoscale 2021, 13, 2378–2388.

    Article  CAS  Google Scholar 

  67. Shang, Y.; Ji, Y. X.; Dong, J. W.; Yang, G.; Zhang, X. D.; Su, F. M.; Feng, Y. Z.; Liu, C. T. Sandwiched cellulose nanofiber/boron nitride nanosheet/Ti3C2Tx MXene composite film with high electromagnetic shielding and thermal conductivity yet insulation performance. Compos. Sci. Technol. 2021, 214, 108974.

    Article  CAS  Google Scholar 

  68. Han, G. J.; Zhang, D.; Kong, C. M.; Zhou, B.; Shi, Y. Q.; Feng, Y. Z.; Liu, C. T.; Wang, D. Y. Flexible, thermostable and flame-resistant epoxy-based thermally conductive layered films with aligned ionic liquid-wrapped boron nitride nanosheets via cyclic layer-by-layer blade-casting. Chem. Eng. J. 2022, 437, 135482.

    Article  CAS  Google Scholar 

  69. Xue, Y.; Wang, H. S.; Li, X. F.; Chen, Y. F. Exceptionally thermally conductive and electrical insulating multilaminar aligned silicone rubber flexible composites with highly oriented and dispersed filler network by mechanical shearing. Compos. Part A: Appl. Sci. Manuf. 2021, 144, 106336.

    Article  CAS  Google Scholar 

  70. Gao, Q. S.; Pan, Y. M.; Zheng, G. Q.; Liu, C. T.; Shen, C. Y.; Liu, X. H. Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid. Mater. 2021, 4, 274–285.

    Article  CAS  Google Scholar 

  71. Chu, Z. Y.; Li, W. Z.; Song, S. Q.; Yuan, W. C.; Zhu, S. B.; Gan, W. J. Multilayered nacre-mimetic inspired flexible PEI film with high thermal conductivity and reliable dielectric performances. Ceram. Int. 2022, 48, 13794–13802.

    Article  CAS  Google Scholar 

  72. Tan, Z. N.; Zhao, H.; Sun, F. R.; Ran, L. X.; Yi, L. F.; Zhao, L. J.; Wu, J. R. Fabrication of Chitosan/MXene multilayered film based on layer-by-layer assembly: Toward enhanced electromagnetic interference shielding and thermal management capacity. Compos. Part A: Appl Sci. Manuf. 2022, 155, 106809.

    Article  CAS  Google Scholar 

  73. Ahn, E.; Lee, T.; Gu, M. S.; Park, M.; Min, S. H.; Kim, B. S. Layer-by-layer assembly for graphene-based multilayer nanocomposites: The field manual. Chem. Mater. 2017, 29, 69–79.

    Article  CAS  Google Scholar 

  74. Menge, H. G.; Huynh, N. D.; Cho, C.; Choi, D.; Park, Y. T. Designable functional polymer nanocomposites via layer-by-layer assembly for highly deformable power-boosted triboelectric nanogenerators. Compos. Part B: Eng. 2022, 230, 109513.

    Article  CAS  Google Scholar 

  75. Fang, H. M.; Bai, S. L.; Wong, C. P. Microstructure engineering of graphene towards highly thermal conductive composites. Compos. Part A: Appl. Sci. Manuf. 2018, 112, 216–238.

    Article  CAS  Google Scholar 

  76. Shen, X.; Kim, J. K. 3D graphene and boron nitride structures for nanocomposites with tailored thermal conductivities: Recent advances and perspectives. Funct. Compos. Struct. 2020, 2, 022001.

    Article  CAS  Google Scholar 

  77. Guan, L. Z.; Zhao, L.; Wan, Y. J.; Tang, L. C. Three-dimensional graphene-based polymer nanocomposites: Preparation, properties and applications. Nanoscale 2018, 10, 14788–14811.

    Article  CAS  Google Scholar 

  78. Chen, Y. P.; Hou, X.; Liao, M. Z.; Dai, W.; Wang, Z. W.; Yan, C.; Li, H.; Lin, C. T.; Jiang, N.; Yu, J. H. Constructing a “pea-pod-like” alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite. Chem. Eng. J. 2020, 381, 122690.

    Article  CAS  Google Scholar 

  79. Hao, M. Y.; Hu, Z.; Huang, Y. D.; Qian, X.; Wen, Z. P.; Wang, X. F.; Liu, L.; Lu, F.; Zhang, Y. G. Enhanced both in-plane and through-thickness thermal conductivity of carbon fiber/epoxy composites by fabricating high thermal conductive coaxial PAN/PBO carbon fibers. Compos. Part B: Eng. 2022, 229, 109468.

    Article  CAS  Google Scholar 

  80. Yao, Y. M.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Wong, C. P. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 2018, 14, 1704044.

    Article  Google Scholar 

  81. Wang, Y.; Zhang, Z.; Li, T.; Ma, P. M.; Zhang, X. H.; Xia, B. H.; Chen, M. Q.; Du, M. L.; Liu, T. X.; Dong, W. F. Artificial nacre epoxy nanomaterials based on janus graphene oxide for thermal management applications. ACS Appl. Mater. Interfaces 2020, 12, 44273–44280.

    Article  CAS  Google Scholar 

  82. Hu, J. T.; Huang, Y.; Yao, Y. M.; Pan, G. R.; Sun, J. J.; Zeng, X. L.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces 2017, 9, 13544–13553.

    Article  CAS  Google Scholar 

  83. Ying, J. F.; Tan, X.; Lv, L.; Wang, X. Z.; Gao, J. Y.; Yan, Q. W.; Ma, H. B.; Nishimura, K.; Li, H.; Yu, J. H. et al. Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates. ACS Nano 2021, 15, 12922–12934.

    Article  CAS  Google Scholar 

  84. Zhang, F.; Ren, D. H.; Zhang, Y. H.; Huang, L. Q.; Sun, Y. X.; Wang, W.; Zhang, Q.; Feng, W.; Zheng, Q. B. Production of highly-oriented graphite monoliths with high thermal conductivity. Chem. Eng. J. 2022, 431, 134102.

    Article  CAS  Google Scholar 

  85. Song, Y. X.; Li, B.; Yang, S. W.; Ding, G. Q.; Zhang, C. R.; Xie, X. M. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition. Sci. Rep. 2015, 5, 10337.

    Article  CAS  Google Scholar 

  86. Ullah, S.; Hasan, M.; Ta, H. Q.; Zhao, L.; Shi, Q. T.; Fu, L.; Choi, J.; Yang, R. Z.; Liu, Z. F.; Rümmeli, M. H. Synthesis of doped porous 3D graphene structures by chemical vapor deposition and its applications. Adv. Funct. Mater. 2019, 29, 1904457.

    Article  CAS  Google Scholar 

  87. Shao, G. F.; Hanaor, D. A. H.; Shen, X. D.; Gurlo, A. Freeze casting: From low-dimensional building blocks to aligned porous structures-a review of novel materials, methods, and applications. Adv. Mater. 2020, 32, 1907176.

    Article  CAS  Google Scholar 

  88. Yang, J.; Yang, W.; Chen, W.; Tao, X. M. An elegant coupling: Freeze-casting and versatile polymer composites. Prog. Polym. Sci. 2020, 109, 101289.

    Article  CAS  Google Scholar 

  89. Hou, X.; Chen, Y. P.; Dai, W.; Wang, Z. W.; Li, H.; Lin, C. T.; Nishimura, K.; Jiang, N.; Yu, J. H. Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers. Chem. Eng. J. 2019, 375, 121921.

    Article  CAS  Google Scholar 

  90. Wang, X. W.; Wu, P. Y. 3D vertically aligned bnns network with long-range continuous channels for achieving a highly thermally conductive composite. ACS Appl. Mater. Interfaces 2019, 11, 28943–28952.

    Article  CAS  Google Scholar 

  91. Liu, P. F.; Li, X. F.; Min, P.; Chang, X. Y.; Shu, C.; Ding, Y.; Yu, Z. Z. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 2021, 13, 22.

    Article  Google Scholar 

  92. Guo, F. M.; Shen, X.; Zhou, J. M.; Liu, D.; Zheng, Q. B.; Yang, J. L.; Jia, B. H.; Lau, A. K. T.; Kim, J. K. Highly thermally conductive dielectric nanocomposites with synergistic alignments of graphene and boron nitride nanosheets. Adv. Funct. Mater. 2020, 30, 1910826.

    Article  CAS  Google Scholar 

  93. Tan, X.; Yuan, Q. L.; Qiu, M. T.; Yu, J. H.; Jiang, N.; Lin, C. T.; Dai, W. Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: A mini review. J. Mater. Sci. Technol. 2022, 117, 238–250.

    Article  Google Scholar 

  94. Guo, X. X.; Cheng, S. J.; Cai, W. W.; Zhang, Y. F.; Zhang, X. A. A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties. Mater. Des. 2021, 209, 109936.

    Article  CAS  Google Scholar 

  95. Cai, C. L.; Wang, T.; Qu, G. W.; Feng, Z. Q. High thermal conductivity of graphene and structure defects: Prospects for thermal applications in graphene sheets. Chin. Chem. Lett. 2021, 32, 1293–1298.

    Article  CAS  Google Scholar 

  96. Wu, Z. H.; Xu, C.; Ma, C. Q.; Liu, Z. B.; Cheng, H. M.; Ren, W. C. Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites. Adv. Mater. 2019, 31, 1900199.

    Article  Google Scholar 

  97. Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Ultrahigh thermal conductive yet superflexible graphene films. Adv. Mater. 2017, 29, 1700589.

    Article  Google Scholar 

  98. Weng, C. J.; Li, W.; Wu, J.; Shen, L. M.; Yang, W. Z.; Deng, C.; Bao, N. Z. Thermal shock exfoliated and siloxane cross-linked graphene framework for high performance epoxy-based thermally conductive composites. J. Mater. Sci. 2021, 56, 17601–17614.

    Article  CAS  Google Scholar 

  99. Dai, W.; Lv, L.; Ma, T. F.; Wang, X. Z.; Ying, J. F.; Yan, Q. W.; Tan, X.; Gao, J. Y.; Xue, C.; Yu, J. H. et al. Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 2021, 8, 2003734.

    Article  CAS  Google Scholar 

  100. Wu, N.; Che, S.; Li, H. W.; Wang, C. N.; Tian, X. J.; Li, Y. F. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: Construction and applications. New Carbon Mater. 2021, 36, 911–926.

    Article  CAS  Google Scholar 

  101. Vu, M. C.; Choi, W. K.; Lee, S. G.; Park, P. J.; Kim, D. H.; Islam, A.; Kim, S. R. High thermal conductivity enhancement of polymer composites with vertically aligned silicon carbide sheet scaffolds. ACS Appl. Mater. Interfaces 2020, 12, 23388–23398.

    Article  CAS  Google Scholar 

  102. Guan, C. L.; Qin, Y.; Wang, B.; Li, L. H.; Wang, M. J.; Lin, C. T.; He, X. D.; Nishimura, K.; Yu, J. H.; Yi, J. et al. Highly thermally conductive polymer composites with barnacle-like nano-crystalline diamond@silicon carbide hybrid architecture. Compos. Part B: Eng. 2020, 198, 108167.

    Article  CAS  Google Scholar 

  103. Zeng, J.; Ji, X. X.; Ma, Y. H.; Zhang, Z. X.; Wang, S. G.; Ren, Z. H.; Zhi, C. Y.; Yu, J. 3D graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 2018, 30, 1705380.

    Article  Google Scholar 

  104. Wang, Z.; Gao, C. P.; Zhang, S. M.; Zhang, P. Y.; Zhang, Z. J. Magnetic field-induced alignment of nickel-coated copper nanowires in epoxy composites for highly thermal conductivity with low filler loading. Compos. Sci. Technol. 2022, 218, 109137.

    Article  CAS  Google Scholar 

  105. Shi, W.; Huang, J.; Fang, R. C.; Liu, M. J. Imparting functionality to the hydrogel by magnetic-field-induced nano-assembly and macro-response. ACS Appl. Mater. Interfaces 2020, 12, 5177–5194.

    Article  CAS  Google Scholar 

  106. Chung, J. Y.; Lee, J. G.; Baek, Y. K.; Shin, P. W.; Kim, Y. K. Magnetic field-induced enhancement of thermal conductivities in polymer composites by linear clustering of spherical particles. Compos. Part B: Eng. 2018, 136, 215–221.

    Article  CAS  Google Scholar 

  107. Kim, Y.; Kim, J. Fabrication of Fe3O4 coated boron nitride nanoplatelets by liquid-phase exfoliation for thermally enhanced epoxy composites via magnetic alignment. Compos. Sci. Technol. 2020, 188, 107961.

    Article  CAS  Google Scholar 

  108. Wu, K.; Wang, J. M.; Liu, D. Y.; Lei, C. X.; Liu, D.; Lei, W. W.; Fu, Q. Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 2020, 32, 1906939.

    Article  CAS  Google Scholar 

  109. Wang, J. M.; Liu, D.; Li, Q. X.; Chen, C.; Chen, Z. Q.; Naebe, M.; Song, P. A.; Portehault, D.; Garvey, C. J.; Golbery, D. et al. Nacre-bionic nanocomposite membrane for efficient in-plane dissipation heat harvest under high temperature. J. Materiomics 2021, 7, 219–225.

    Article  CAS  Google Scholar 

  110. Wang, W. Y.; Ma, X.; Shao, Y. W.; Qi, X. D.; Yang, J. H.; Wang, Y. Flexible, multifunctional, and thermally conductive nylon/graphene nanoplatelet composite papers with excellent EMI shielding performance, improved hydrophobicity and flame resistance. J. Mater. Chem. A 2021, 9, 5033–5044.

    Article  CAS  Google Scholar 

  111. Liu, Y. C.; Lu, M. P.; Hu, Z. R.; Liang, L. Y.; Shi, J.; Huang, X. M.; Lu, M. G.; Wu, K. Casein phosphopeptide-biofunctionalized graphene oxide nanoplatelets based cellulose green nanocomposites with simultaneous high thermal conductivity and excellent flame retardancy. Chem. Eng. J. 2020, 382, 122733.

    Article  CAS  Google Scholar 

  112. Jiao, D. J.; Song, N.; Ding, P.; Shi, L. Y. Enhanced thermal conductivity in oriented cellulose nanofibril/graphene composites via interfacial engineering. Compos. Commun. 2022, 31, 101101.

    Article  Google Scholar 

  113. Ma, T. B.; Zhao, Y. S.; Ruan, K. P.; Liu, X. R.; Zhang, J. L.; Guo, Y. Q.; Yang, X. T.; Kong, J.; Gu, J. W. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl. Mater. Interfaces 2020, 12, 1677–1686.

    Article  CAS  Google Scholar 

  114. An, L. L.; Gu, R.; Zhong, B.; Wang, J. L.; Zhang, J. Y.; Yu, Y. L. Quasi-isotropically thermal conductive, highly transparent, insulating and super-flexible polymer films achieved by cross linked 2D hexagonal boron nitride nanosheets. Small 2021, 17, 2101409.

    Article  CAS  Google Scholar 

  115. Hu, Z. R.; Wang, S.; Chen, G. K.; Zhang, Q.; Wu, K.; Shi, J.; Liang, L. Y.; Lu, M. G. An aqueous-only, green route to exfoliate boron nitride for preparation of high thermal conductive boron nitride nanosheet/cellulose nanofiber flexible film. Compos. Sci. Technol. 2018, 168, 287–295.

    Article  CAS  Google Scholar 

  116. Fu, C. J.; Li, Q.; Lu, J. B.; Mateti, S.; Cai, Q. R.; Zeng, X. L.; Du, G. P.; Sun, R.; Chen, Y.; Xu, J. B. et al. Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. Compos. Sci. Technol. 2018, 165, 322–330.

    Article  CAS  Google Scholar 

  117. Jin, X. X.; Wang, J. F.; Dai, L. Z.; Liu, X. Y.; Li, L.; Yang, Y. Y.; Cao, Y. X.; Wang, W. J.; Wu, H.; Guo, S. Y. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475.

    Article  CAS  Google Scholar 

  118. Jiao, E. X.; Wu, K.; Liu, Y. C.; Lu, M. P.; Zhang, H. Z.; Zheng, H. T.; Xu, C. A.; Shi, J.; Lu, M. G. Robust bioinspired MXene-based flexible films with excellent thermal conductivity and photothermal properties. Compos. Part A: Appl. Sci. Manuf. 2021, 143, 106290.

    Article  CAS  Google Scholar 

  119. Jiao, E. X.; Wu, K.; Liu, Y. C.; Lu, M. P.; Hu, Z. R.; Chen, B.; Shi, J.; Lu, M. G. Ultrarobust MXene-based laminated paper with excellent thermal conductivity and flame retardancy. Compos. Part A: Appl. Sci. Manuf. 2021, 146, 106417.

    Article  CAS  Google Scholar 

  120. Huang, X. W.; Wu, P. Y. A small amount of delaminated Ti3C2 flakes to greatly enhance the thermal conductivity of boron nitride papers by assembling a well-designed interface. Mater. Chem. Front. 2020, 4, 292–301.

    Article  CAS  Google Scholar 

  121. Shan, B.; Xiong, Y. Z.; Li, Y. H.; Yang, H.; Chen, Y. F. Sandwich structured RGO/CNF/RGO composite films for superior mechanical and thermally conductive properties. Cellulose 2020, 27, 5055–5069.

    Article  CAS  Google Scholar 

  122. Nie, S. X.; Mo, J. L.; Zhang, Y. H.; Xiong, C. Y.; Wang, S. F. Ultrahigh thermal-conductive, reduced graphene oxide welded cellulose nanofibrils network for efficient thermal management. Carbohydr. Polym. 2020, 250, 116971.

    Article  CAS  Google Scholar 

  123. Mo, R.; Liu, Z. J.; Guo, W. Y.; Wu, X. F.; Xu, Q. J.; Min, Y. L.; Fan, J. C.; Yu, J. H. Interfacial crosslinking for highly thermally conductive and mechanically strong boron nitride/aramid nanofiber composite film. Compos. Commun. 2021, 28, 100962.

    Article  Google Scholar 

  124. Zhao, L. H.; Wei, C. M.; Li, Z. H.; Wei, W. F.; Jia, L. C.; Huang, X. L.; Ning, W. J.; Wang, Z.; Ren, J. W. High-temperature dielectric paper with high thermal conductivity and mechanical strength by engineering the aramid nanofibers and boron nitride nanotubes. Mater. Des. 2021, 210, 110124.

    Article  CAS  Google Scholar 

  125. Xie, K.; Liu, Y. H.; Tian, Y. X.; Wu, X. N.; Wu, L. Y.; Mo, Y. L.; Sui, G. P.; Du, R. N.; Fu, Q.; Chen, F. Improving the flexibility of graphene nanosheets films by using aramid nanofiber framework. Compos. Part A: Appl. Sci. Manuf. 2021, 142, 106265.

    Article  CAS  Google Scholar 

  126. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

    Article  CAS  Google Scholar 

  127. Xue, B.; Yang, S. D.; Sun, X.; Xie, L.; Qin, S. H.; Zheng, Q. From tanghulu-like to cattail-like SiC nanowire architectures: Interfacial design of nanocellulose composites toward high thermal conductivity. J. Mater. Chem. A 2020, 8, 14506–14518.

    Article  CAS  Google Scholar 

  128. Wang, X. W.; Wu, P. Y. Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility. ACS Appl. Mater. Interfaces 2019, 11, 21946–21954.

    Article  CAS  Google Scholar 

  129. Yan, Q. W.; Dai, W.; Gao, J. Y.; Tan, X.; Lv, L.; Ying, J. F.; Lu, X. X.; Lu, J. B.; Yao, Y. G.; Wei, Q. P. et al. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 2021, 15, 6489–6498.

    Article  CAS  Google Scholar 

  130. Zhan, Y. J.; Nan, B. F.; Liu, Y. C.; Jiao, E. X.; Shi, J.; Lu, M. G.; Wu, K. Multifunctional cellulose-based fireproof thermal conductive nanocomposite films assembled by in-situ grown SiO2 nanoparticle onto MXene. Chem. Eng. J. 2021, 421, 129733.

    Article  CAS  Google Scholar 

  131. Chen, J.; Huang, X. Y.; Sun, B.; Jiang, P. K. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 2019, 13, 337–345.

    Article  CAS  Google Scholar 

  132. Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

    Article  CAS  Google Scholar 

  133. Yang, G.; Zhang, X. D.; Shang, Y.; Xu, P. H.; Pan, D.; Su, F. M.; Ji, Y. X.; Feng, Y. Z.; Liu, Y. Z.; Liu, C. T. Highly thermally conductive polyvinyl alcohol/boron nitride nanocomposites with interconnection oriented boron nitride nanoplatelets. Compos. Sci. Technol. 2021, 201, 108521.

    Article  CAS  Google Scholar 

  134. Wang, H.; Zhang, Y.; Niu, H. T.; Wu, L. Y.; He, X. H.; Xu, T.; Wang, N. Y.; Yao, Y. G. An electrospinning-electrospraying technique for connecting electrospun fibers to enhance the thermal conductivity of boron nitride/polymer composite films. Compos. Part B: Eng. 2022, 230, 109505.

    Article  CAS  Google Scholar 

  135. Chen, J.; Wei, H.; Bao, H.; Jiang, P. K.; Huang, X. Y. Millefeuille-inspired thermally conductive polymer nanocomposites with overlapping BN nanosheets for thermal management applications. ACS Appl. Mater. Interfaces 2019, 11, 31402–31410.

    Article  CAS  Google Scholar 

  136. Wei, B. J.; Zhang, L.; Yang, S. Q. Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance. Chem. Eng. J. 2021, 404, 126437.

    Article  CAS  Google Scholar 

  137. Liu, Y. H.; Zeng, J.; Han, D.; Wu, K.; Yu, B. W.; Chai, S. G.; Chen, F.; Fu, Q. Graphene enhanced flexible expanded graphite film with high electric, thermal conductivities and EMI shielding at low content. Carbon 2018, 133, 435–445.

    Article  CAS  Google Scholar 

  138. Guo, H. C.; Zhao, H. Y.; Niu, H. Y.; Ren, Y. J.; Fang, H. M.; Fang, X. X.; Lv, R. C.; Maqbool, M.; Bai, S. L. Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications. ACS Nano 2021, 15, 6917–6928.

    Article  CAS  Google Scholar 

  139. Liu, J. C.; Li, W. W.; Guo, Y. F.; Zhang, H.; Zhang, Z. Improved thermal conductivity of thermoplastic polyurethane via aligned boron nitride platelets assisted by 3D printing. Compos. Part A: Appl Sci. Manuf. 2019, 120, 140–146.

    Article  CAS  Google Scholar 

  140. Wang, J. L.; Mubarak, S.; Dhamodharan, D.; Divakaran, N.; Wu, L. X.; Zhang, X. Fabrication of thermoplastic functionally gradient composite parts with anisotropic thermal conductive properties based on multicomponent fused deposition modeling 3D printing. Compos. Commun. 2020, 19, 142–146.

    Article  CAS  Google Scholar 

  141. Jing, J. J.; Chen, Y. H.; Shi, S. H.; Yang, L.; Lambin, P. Facile and scalable fabrication of highly thermal conductive polyethylene/graphene nanocomposites by combining solid-state shear milling and FDM 3D-printing aligning methods. Chem. Eng. J. 2020, 402, 126218.

    Article  CAS  Google Scholar 

  142. Huang, Y. F.; Wang, Z. G.; Yu, W. C.; Ren, Y.; Lei, J.; Xu, J. Z.; Li, Z. M. Achieving high thermal conductivity and mechanical reinforcement in ultrahigh molecular weight polyethylene bulk material. Polymer 2019, 180, 121760.

    Article  CAS  Google Scholar 

  143. Yu, W. C.; Wang, T.; Zhang, G. Q.; Wang, Z. G.; Yin, H. M.; Yan, D. X.; Xu, J. Z.; Li, Z. M. Largely enhanced mechanical property of segregated carbon nanotube/poly(vinylidene fluoride) composites with high electromagnetic interference shielding performance. Compos. Sci. Technol. 2018, 167, 260–267.

    Article  CAS  Google Scholar 

  144. Huang, Y. F.; Wang, Z. G.; Yin, H. M.; Xu, J. Z.; Chen, Y. W.; Lei, J.; Zhu, L.; Gong, F.; Li, Z. M. Highly anisotropic, thermally conductive, and mechanically strong polymer composites with nacre-like structure for thermal management applications. ACS Appl. Nano Mater. 2018, 1, 3312–3320.

    Article  CAS  Google Scholar 

  145. Wang, Y. J.; Xia, S.; Xiao, G.; Di, J. T.; Wang, J. F. High-loading boron nitride-based bio-inspired paper with plastic-like ductility and metal-like thermal conductivity. ACS Appl. Mater. Interfaces 2020, 12, 13156–13164.

    Article  CAS  Google Scholar 

  146. Xiao, G.; Di, J. T.; Li, H.; Wang, J. F. Highly thermally conductive, ductile biomimetic boron nitride/aramid nanofiber composite film. Compos. Sci. Technol. 2020, 189, 108021.

    Article  CAS  Google Scholar 

  147. Vu, M. C.; Mani, D.; Jeong, T. H.; Kim, J. B.; Lim, C. S.; Kang, H.; Islam, A.; Lee, O. C.; Park, P. J.; Kim, S. R. Nacre-inspired nanocomposite papers of graphene fluoride integrated 3D aramid nanofibers towards heat-dissipating applications. Chem. Eng. J. 2022, 429, 132182.

    Article  CAS  Google Scholar 

  148. Zeng, H. X.; Wu, J. Y.; Ma, Y. P.; Ye, Y. S.; Liu, J. W.; Li, X. W.; Wang, Y.; Liao, Y. G.; Luo, X. B.; Xie, X. L. et al. Scalable approach to construct self-assembled graphene-based films with an ordered structure for thermal management. ACS Appl. Mater. Interfaces 2018, 10, 41690–41698.

    Article  CAS  Google Scholar 

  149. Zeng, H. X.; Wu, J. Y.; Pei, H. J.; Zhang, Y. K.; Ye, Y. S.; Liao, Y. G.; Xie, X. L. Highly thermally conductive yet mechanically robust composites with nacre-mimetic structure prepared by evaporation-induced self-assembly approach. Chem. Eng. J. 2021, 405, 126865.

    Article  CAS  Google Scholar 

  150. Li, X. W.; Deng, N. X.; Qu, H.; Zeng, H. X.; Pei, H. J.; Ye, Y. S.; Xie, X. L. Nacre-inspired polymer nanocomposites with highperformance and multifunctional properties realized by a facile evaporation-induced self-assembly approach. ACS Sustainable Chem. Eng. 2019, 7, 19787–19798.

    Article  CAS  Google Scholar 

  151. Zhuang, Y. F.; Zheng, K.; Cao, X. Y.; Fan, Q. R.; Ye, G.; Lu, J. X.; Zhang, J. N.; Ma, Y. M. Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology. ACS Nano 2020, 14, 11733–11742.

    Article  CAS  Google Scholar 

  152. Gao, Y. Y.; Zhang, M. H.; Chen, X. R.; Zhu, Y. J.; Wang, H. Y.; Yuan, S. C.; Xu, F.; Cui, Y. X.; Bao, D.; Shen, X. S. et al. A highperformance thermal conductive and outstanding electrical insulating composite based on robust neuron-like microstructure. Chem. Eng. J. 2021, 426, 131280.

    Article  CAS  Google Scholar 

  153. Wu, S.; Li, T. X.; Tong, Z.; Chao, J. W.; Zhai, T. Y.; Xu, J. X.; Yan, T. S.; Wu, M. Q.; Xu, Z. Y.; Bao, H. et al. High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv. Mater. 2019, 31, 1905099.

    Article  CAS  Google Scholar 

  154. Zeng, X. L.; Ye, L.; Yu, S. H.; Li, H.; Sun, R.; Xu, J. B.; Wong, C. P. Artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets with excellent mechanical and thermally conductive properties. Nanoscale 2015, 7, 6774–6781.

    Article  CAS  Google Scholar 

  155. Hu, D. C.; Ma, W. S.; Zhang, Z. L.; Ding, Y.; Wu, L. Dual bio-inspired design of highly thermally conductive and superhydrophobic nanocellulose composite films. ACS Appl. Mater. Interfaces 2020, 12, 11115–11125.

    Article  CAS  Google Scholar 

  156. Yang, S. D.; Sun, X.; Shen, J. Q.; Li, Y.; Xie, L.; Qin, S. H.; Xue, B.; Zheng, Q. Interface engineering based on polydopamine-assisted metallization in highly thermal conductive cellulose/nanodiamonds composite paper. ACS Sustainable Chem. Eng. 2020, 8, 17639–17650.

    Article  CAS  Google Scholar 

  157. Wang, Z. G.; Lv, J. C.; Zheng, Z. L.; Du, J. G.; Dai, K.; Lei, J.; Xu, L.; Xu, J. Z.; Li, Z. M. Highly thermally conductive graphene-based thermal interface materials with a bilayer structure for central processing unit cooling. ACS Appl. Mater. Interfaces 2021, 13, 25325–25333.

    Article  CAS  Google Scholar 

  158. Ghaffari-Mosanenzadeh, S.; Tafreshi, O. A.; Dammen-Brower, E.; Rad, E.; Meysami, M.; Naguib, H. E. A review on high thermally conductive polymeric composites. Polym. Compos. 2022, 43, 692–711.

    Article  CAS  Google Scholar 

  159. Zhou, T.; Zhao, Y. J.; Rao, Z. H. Fundamental and estimation of thermal contact resistance between polymer matrix composites: A review. Int. J. Heat Mass Transf. 2022, 189, 122701.

    Article  CAS  Google Scholar 

  160. Yu, C. P.; Zhang, J.; Tian, W.; Fan, X. D.; Yao, Y. G. Polymer composites based on hexagonal boron nitride and their application in thermally conductive composites. RSC Adv. 2018, 8, 21948–21967.

    Article  CAS  Google Scholar 

  161. He, X. X.; Ou, D.; Wu, S. Y.; Luo, Y.; Ma, Y.; Sun, J. Y. A mini review on factors affecting network in thermally enhanced polymer composites: Filler content, shape, size, and tailoring methods. Adv. Compos. Hybrid Mater. 2022, 5, 21–38.

    Article  CAS  Google Scholar 

  162. Yu, G.; Shen, X.; Kim, J. K. Beyond homogeneous dispersion: Oriented conductive fillers for high κ nanocomposites. Mater. Horiz. 2021, 8, 3009–3042.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21975185) and the Australian Research Council (Nos. DP190102992 and FT190100188), and the ARC Training Centre Project No. IC170100032.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengzhou Wang or Pingan Song.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Ma, Z., Wang, M. et al. Recent advances in nacre-inspired anisotropic thermally conductive polymeric nanocomposites. Nano Res. 16, 1362–1386 (2023). https://doi.org/10.1007/s12274-022-4824-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4824-2

Keywords

Navigation