Skip to main content
Log in

Thermal shock exfoliated and siloxane cross-linked graphene framework for high performance epoxy-based thermally conductive composites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The fabrication of epoxy/graphene composites with greatly enhanced thermal conductivity (K) in terms of efficient thermal dissipation of electronic devices has drawn much interest. However, the lack of continuous thermal conductive paths and thermal interface resistances generated between matrix and fillers limit the further enhancement of the K value. Here, a siloxane cross-linked graphene framework (SGF) with highly conductive paths is prepared by a simple way, i.e., thermal-shock exfoliation of graphene oxide film followed by self-polymerization of silanol inside GF. The epoxy (EP) resin was then impregnated into SGF to form the EP/SCF composite. The mutual percolation of EP and SGF in the composite eliminates the distribution issue of graphene sheets. The siloxane molecular network not only cross-links adjacent graphene sheets, but also forms chemical bonding with EP matrix, resulting in significantly decreased inter-sheet and interface thermal resistances. The EP/SGF composite containing 20.2 wt% graphene exhibits an in-plane K of 54.2 W m–1 K–1, which is about twice higher than that of EP/GF without siloxane and 270 times higher than pure EP.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wu S, Li TX, Tong Z et al (2019) High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv Mater 31:1905099. https://doi.org/10.1002/adma.201905099

    Article  CAS  Google Scholar 

  2. Suh D, Moon CM, Kim D, Baik S (2016) Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits. Adv Mater 28:7220–7227

    Article  CAS  Google Scholar 

  3. Xu XF, Chen J, Zhou J, Li BW (2018) Thermal conductivity of polymers and their nanocomposites. Adv Mater 30:1705544. https://doi.org/10.1002/adma.201705544

    Article  CAS  Google Scholar 

  4. Mu ML, Wan CY, McNally T (2017) Thermal conductivity of 2D nano-structured graphitic materials and their composites with epoxy resins. 2D Mater 4:042001. https://doi.org/10.1088/2053-1583/aa7cd1

    Article  CAS  Google Scholar 

  5. Yang XT, Zhong X, Zhang JL, Gu JW (2021) Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance. J Mater Sci Technol 68:209–215. https://doi.org/10.1016/j.jmst.2020.08.027

    Article  Google Scholar 

  6. Permal A, Devarajan M, Hung HL, Zahner T, Lacey D, Ibrahim K (2016) Thermal and mechanical properties of epoxy composite filled with binary particle system of polygonal aluminum oxide and boron nitride platelets. J Mater Sci 51:7415–7426. https://doi.org/10.1007/s10853-016-0016-3

    Article  CAS  Google Scholar 

  7. Wang X, Qu YF, Jiao L, Bian HY, Wang RB, Wu WB, Fang GG, Dai HQ (2021) Boosting the thermal conductivity of CNF-based composites by cross-linked lignin nanoparticle and BN-OH: dual construction of 3D thermally conductive pathways. Compos Sci Technol 204:108641. https://doi.org/10.1016/j.compositesa.2019.105673

    Article  CAS  Google Scholar 

  8. Shi XT, Zhang RH, Ruan KP, Tb Ma, Guo YQ, Gu JW (2021) Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J Mater Sci Technol 82:239–249. https://doi.org/10.1016/j.jmst.2021.01.018

    Article  Google Scholar 

  9. Xu YS, Chung DDL, Mroz C (2001) Thermally conducting aluminum nitride polymer-matrix composites. Compos Part A Appl Sci Manuf 32:1749–1757

    Article  Google Scholar 

  10. Ouyang YG, Ding F, Bai LY, Li XF, Hou GL, Fan JM, Yuan FL (2020) Design of network Al2O3 spheres for significantly enhanced thermal conductivity of polymer composites. Compos Part A Appl Sci Manuf 128:105673. https://doi.org/10.1016/j.compositesa.2019.105673

    Article  CAS  Google Scholar 

  11. Xing ZH, Sun W, Wang LD, Yang ZQ, Wang SL, Liu GC (2019) Size-controlled graphite nanoplatelets: thermal conductivity enhancers for epoxy resin. J Mater Sci 54:10041–10054. https://doi.org/10.1007/s10853-019-03525-5

    Article  CAS  Google Scholar 

  12. Hu JT, Huang Y, Zeng XL, Li Q, Ren LL, Sun R, Xu JB, Wong CP (2018) Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Compos Sci Technol 160:127–137

    Article  CAS  Google Scholar 

  13. Lv L, Dai W, Li A, Lin CT (2018) Graphene-based thermal interface materials: an application-oriented perspective on architecture design. Polymers 10:1201. https://doi.org/10.3390/polym10111201

    Article  CAS  Google Scholar 

  14. Gu JW, Ruan KP (2021) Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Mocro Lett 13:110. https://doi.org/10.1007/s40820-021-00640-4

    Article  CAS  Google Scholar 

  15. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  16. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581

    Article  CAS  Google Scholar 

  17. Song SH, Park KH, Kim BH et al (2013) Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv Mater 25:732–737

    Article  CAS  Google Scholar 

  18. Zhang YH, Park SJ (2018) In situ shear-induced mercapto group-activated graphite nanoplatelets for fabricating mechanically strong and thermally conductive elastomer composites for thermal management applications. Compos Part A Appl Sci Manuf 112:40–48

    Article  CAS  Google Scholar 

  19. Li Y, Wei W, Wang Y, Kadhim N, Mei Y, Zhou Z (2019) Construction of highly aligned graphene-based aerogels and their epoxy composites towards high thermal conductivity. J Mater Chem C 7:11783–11789. https://doi.org/10.1039/C9TC02937K

    Article  CAS  Google Scholar 

  20. Lian G, Tuan CC, Li LY, Jiao SL, Wang QL, Moon KS, Cui DL, Wong CP (2016) Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem Mater 28:6096–6104

    Article  CAS  Google Scholar 

  21. Fang HM, Guo HC, Hu YR, Ren YJ, Hsu PC, Bai SL (2020) In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Compos Sci Technol 188:107975. https://doi.org/10.1016/j.compscitech.2019.107975

    Article  CAS  Google Scholar 

  22. Liu PF, An F, Lu XM, Li XF, Min P, Shu C, Li W, Yu ZZ (2021) Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels. Compos Sci Technol 201:108492. https://doi.org/10.1016/j.compscitech.2020.108492

    Article  CAS  Google Scholar 

  23. Song P, Liu B, Liang CB, Ruan KP, Qiu H, Ma ZL, Guo YQ, Gu JW (2021) Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding emi shielding performances and excellent thermal conductivities. Nano-Mocro Lett 13:91. https://doi.org/10.1007/s40820-021-00624-4

    Article  CAS  Google Scholar 

  24. Li XH, Liu PF, Li XF, An F, Min P, Liao KN, Yu ZZ (2018) Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites. Carbon 140:624–633

    Article  CAS  Google Scholar 

  25. Shen X, Wang ZY, Wu Y et al (2018) A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater Horiz 5:275–284

    Article  CAS  Google Scholar 

  26. An F, Li XF, Min P, Liu PF, Jiang ZG, Yu ZZ (2018) Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl Mater Interfaces 10:17383–17392

    Article  CAS  Google Scholar 

  27. Zhang WY, Kong QQ, Tao ZC, Wei JC, Xie LJ, Cui XY, Chen CM (2019) 3D thermally cross-linked graphene aerogel-enhanced silicone rubber elastomer as thermal interface material. Adv Mater Interfaces 6:1900147. https://doi.org/10.1002/admi.201900147

    Article  CAS  Google Scholar 

  28. Chen XJ, Li W, Luo D et al (2017) Controlling the thickness of thermally expanded films of graphene oxide. ACS Nano 11:665–674

    Article  CAS  Google Scholar 

  29. Wei W, Guan TX, Li C, Shen LM, Bao NZ (2020) Heating rate-controlled thermal exfoliation for foldable graphene sponge. Ind Eng Chem Res 59:2946–2952

    Article  CAS  Google Scholar 

  30. Li C, Shi YX, Chen X, He DF, Shen LM, Bao NZ (2018) Controlled synthesis of graphite oxide: formation process, oxidation kinetics, and optimized conditions. Chem Eng Sci 176:319–328

    Article  CAS  Google Scholar 

  31. Guo Y, Dun CC, Xu JW et al (2017) Ultrathin, washable, and large-area graphene papers for personal thermal management. Small 13:1702645. https://doi.org/10.1002/smll.201702645

    Article  CAS  Google Scholar 

  32. Liang CB, Qiu H, Han YY et al (2019) Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J Mater Chem C 7:2725–2733. https://doi.org/10.1039/C8TC05955A

    Article  CAS  Google Scholar 

  33. Li Q, Guo YF, Li WW et al (2014) Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chem Mater 26:4459–4465

    Article  CAS  Google Scholar 

  34. Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C (2017) Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater 29:1700589. https://doi.org/10.1002/adma.201700589

    Article  CAS  Google Scholar 

  35. Zhang Y, Han HX, Wang N et al (2015) Improved heat spreading performance of functionalized graphene in microelectronic device application. Adv Funct Mater 25:4430–4435

    Article  CAS  Google Scholar 

  36. Wang S, Zhao CJ, Ma WJ et al (2013) Silane-cross-linked polybenzimidazole with improved conductivity for high temperature proton exchange membrane fuel cells. J Mater Chem A 1:621–629. https://doi.org/10.1039/C2TA00216G

    Article  CAS  Google Scholar 

  37. Zhou TL, Wang X, Mingyuan GU, Liu XH (2008) Study of the thermal conduction mechanism of nano-SiC/DGEBA/EMI-2,4 composites. Polymer 49:4666–4672

    Article  CAS  Google Scholar 

  38. Kim F, Luo JY, Cruz-Silva R, Cote LJ, Sohn K, Huang JX (2010) Self-propagating domino-like reactions in oxidized graphite. Adv Funct Mater 20:2867–2873

    Article  CAS  Google Scholar 

  39. Wang N, Samani MK, Li H et al (2018) Tailoring the thermal and mechanical properties of graphene film by structural engineering. Small 14:1801346. https://doi.org/10.1002/smll.201801346

    Article  CAS  Google Scholar 

  40. Zhan WW, Gao L, Fu X, Siyal SH, Sui G, Yang XP (2019) Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal. Appl Surf Sci 467–468:1122–1133

    Article  Google Scholar 

  41. Yang C, Yang ZG (2013) Synthesis of low viscosity, fast UV curing solder resist based on epoxy resin for ink-jet printing. J Appl Polym Sci 129:187–192

    Article  CAS  Google Scholar 

  42. Fang HM, Zhao YH, Zhang YF, Ren YJ, Baio SL (2017) Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties. ACS Appl Mater Interfaces 9:26447–26459

    Article  CAS  Google Scholar 

  43. Yang XT, Liang CB, Ma TB, Guo YQ, Kong J, Gu JW, Chen MJ, Zhu JH (2018) A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater 1:207–230

    Article  Google Scholar 

  44. Shu XF, Ren HD, Jiang Y, Zhou J, Wang YQ, Wang YF, Liu Y, Oh WC (2020) Enhanced electromagnetic wave absorption performance of silane coupling agent KH550@Fe3O4 hollow nanospheres/graphene composites. J Mater Chem C 8:2913–2926. https://doi.org/10.1039/C9TC05658K

    Article  CAS  Google Scholar 

  45. Wang SR, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25:11078–11081

    Article  CAS  Google Scholar 

  46. Liu ZD, Chen YP, Li YF et al (2019) Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement. Nanoscale 11:17600–17606

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2019YFD1101204), the Natural Science Foundation of China (No. 51772150), and the Key Research and Development Program of Jiangsu Province (BE2018008-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liming Shen or Ningzhong Bao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7084 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, C., Li, W., Wu, J. et al. Thermal shock exfoliated and siloxane cross-linked graphene framework for high performance epoxy-based thermally conductive composites. J Mater Sci 56, 17601–17614 (2021). https://doi.org/10.1007/s10853-021-06147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06147-y

Navigation