Skip to main content

Advertisement

Log in

Sandwich structured RGO/CNF/RGO composite films for superior mechanical and thermally conductive properties

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

It is urgent and significant to develop a thermal interface material (TIM) with both high thermal conductivity and excellent mechanical strength for high-performance electronic devices. For the first time, we designed and fabricated a sandwich structured TIM, constructed by a cellulose nanofiber (CNF) core layer sandwiched by reduced graphene oxide (rGO) shell, with copper ions as a crosslinker, via a facile and scalable vacuum filtration process. The continuous rGO layers on the surface of the composite provided a good thermal conductive pathway for the composite films. The thermal conductivity of the sandwiched films with 8.0 wt% rGO reached 29.5 W/mK, which is over eight times than the CNF films, and realized an ultrafast thermal diffusion time at 73 ms. The sandwich structure combined with the cross-linker of copper ions also plays a synergistic role in construct mechanical strength. Compared to the CNF, the tensile strength of the sandwiched films with 8.0 wt% rGO unprecedentedly reached 314 MPa (nearly three times of bare CNF films), and the elongation increased 63%. In addition, the films also shows high water stability and excellent flexibility, which makes it a very promising for advanced flexible or wearable electronics. This work provides a new insight in rational structure design and novel scalable fabrication strategy to develop TIM with outstanding mechanical strength and thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    CAS  PubMed  Google Scholar 

  • Banholzer MJ, Millstone JE, Lidong Q, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897

    CAS  PubMed  Google Scholar 

  • Beaussart A, Parkinson L, Mierczynska-Vasilev A, Beattie DA (2012) Adsorption of modified dextrins on molybdenite: AFM imaging, contact angle, and flotation studies. J Colloid Interface Sci 368:608–615

    CAS  PubMed  Google Scholar 

  • Brege JJ, Hamilton CE, Crouse CA, Barron AR (2009) Ultrasmall copper nanoparticles from a hydrophobically immobilized surfactant template. Nano Lett 9(6):2239–2242

    CAS  PubMed  Google Scholar 

  • Casiraghi C, Pisana S, Novoselov KS, Geim AK, Ferrari AC (2007) Raman fingerprint of charged impurities in graphene. Appl Phys Lett 91(23):233108

    Google Scholar 

  • Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86:484–494

    CAS  Google Scholar 

  • Feng W, Qin M, Feng Y (2016) Toward highly thermally conductive all-carbon composites: structure control. Carbon 109:575–597

    CAS  Google Scholar 

  • Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    CAS  Google Scholar 

  • Gao K, Shao Z, Xue WU, Wang XI, Jia LI, Zhang Y, Wang W, Wang F (2013) Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohyd Polym 97:243–251

    CAS  Google Scholar 

  • Guo Y, Pan L, Yang X, Ruan K, Han Y, Kong J, Gu J (2019a) Simultaneous improvement of thermal conductivities and electromagnetic interference shielding performances in polystyrene composites via constructing interconnection oriented networks based on electrospinning technology. Compos A Appl Sci Manuf 124:105484

    Google Scholar 

  • Guo Y, Yang X, Ruan K, Kong J, Dong M, Zhang J, Gu J, Guo Z (2019b) Reduced graphene oxide heterostructured silver nanoparticles significantly enhanced thermal conductivities in hot-pressed electrospun polyimide nanocomposites. ACS Appl Mater Interfaces 11:25465–25473

    CAS  PubMed  Google Scholar 

  • Hajian A, Lindstrom SB, Pettersson T, Hamedi MM, Wågberg L (2017) Understanding the dispersive action of nanocellulose for carbon nanomaterials. Nano Lett 17(3):1439–1447

    CAS  PubMed  Google Scholar 

  • Han Y, Shi X, Yang X, Guo Y, Zhang J, Kong J, Gu J (2020) Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos Sci Technol 187:107944

    CAS  Google Scholar 

  • Hu L, Wu H, Cui Y (2011) Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull 36:760–765

    Google Scholar 

  • Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113

    CAS  PubMed  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers Nanoscale 3:71–85

    CAS  PubMed  Google Scholar 

  • Jiali Z, Haijun Y, Guangxia S, Ping C, Jingyan Z, Shouwu G (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112

    Google Scholar 

  • Jiang F, Cui S, Song N, Shi L, Ding P (2018) Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites. ACS Appl Mater Interfaces 10:16812–16821

    CAS  PubMed  Google Scholar 

  • Jung YH, Chang T-H, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park D-W (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nature Commun 6:7170

    Google Scholar 

  • Jung-Tsai C, Ywu-Jang F, Quan-Fu A, Shen-Chuan L, Shu-Hsien H, Wei-Song H, Chien-Chieh H, Kueir-Rarn L, Juin-Yih L (2013) Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films. Nanoscale 5:9081–9088

    Google Scholar 

  • Klein F, Pinedo R, Hering P, Polity A, Janek J, Adelhelm P (2016) Reaction mechanism and surface film formation of conversion materials for lithium- and sodium-ion batteries: an XPS case study on sputtered copper oxide (CuO) thin film model electrodes. J Phys Chem C 120(3):1400–1414

    CAS  Google Scholar 

  • Ko H, Singamaneni S, Tsukruk VV (2010) Nanostructured surfaces and assemblies as SERS media. Small 4:1576–1599

    Google Scholar 

  • Konradi R, Rühe J (2004) Interaction of poly(methacrylic acid) brushes with metal ions: an infrared investigation. Macromolecules 37:6954–6961

    CAS  Google Scholar 

  • Li Q, Guo Y, Li W, Qiu S, Zhu C, Wei X, Chen M, Liu C, Liao S, Gong Y (2014) Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chem Mater 26:4459–4465

    CAS  Google Scholar 

  • Lian G, Tuan C-C, Li L, Jiao S, Wang Q, Moon K-S, Cui D, Wong C-P (2016) Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem Mater 28:6096–6104

    CAS  Google Scholar 

  • Liu Y, Bo X, Xu Z (2011) Mechanics of coordinative crosslinks in graphene nanocomposites: a first-principles study. J Mater Chem 21(18):6707–6712

    CAS  Google Scholar 

  • Liu J, Kutty RG, Zheng Q, Eswariah V, Sreejith S, Liu Z (2016a) Hexagonal boron nitride nanosheets as high-performance binder-free fire-resistant wood coatings. Small 13(2):1602456

    Google Scholar 

  • Liu P, Oksman K, Mathew AP (2016b) Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. J Colloid Interface Sci 464:175–182

    CAS  PubMed  Google Scholar 

  • Ma T, Zhao Y, Ruan K, Liu X, Zhang J, Guo Y, Gu J (2019) Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl Mater Interfaces 12(1):1677–1686

    PubMed  Google Scholar 

  • Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J (2018) Thermal transport in polymeric materials and across composite interfaces. Appl Mater Today 12:92–130

    Google Scholar 

  • Ming Z, Anand J, Semke ED, Diner BA, Mclean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2:338–342

    Google Scholar 

  • Moore AL, Shi L (2014) Emerging challenges and materials for thermal management of electronics. Mater Today 17:163–174

    CAS  Google Scholar 

  • Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K (2012a) A roadmap for graphene. Nature 490:192

    CAS  PubMed  Google Scholar 

  • Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    CAS  Google Scholar 

  • Putz KW, Compton OC, Claire S, Zhi A, Nguyen STL, Catherine B (2011) Evolution of order during vacuum-assisted self-assembly of graphene oxide paper and associated polymer nanocomposites. ACS Nano 5:6601–6609

    CAS  PubMed  Google Scholar 

  • Ruan K, Guo Y, Tang Y, Zhang Y, Zhang J, He M, Kong J, Gu J (2018) Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos Commun 10:68–72

    Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5:1983–1989

    CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491

    CAS  Google Scholar 

  • Sehaqui H, Larraya UPD, Peng L, Pfenninger N, Mathew AP, Zimmermann T, Tingaut P (2014) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21:2831–2844

    CAS  Google Scholar 

  • Shuying W (2012) Thermal conductivity of nano-Cu/paraffin composite phase change materials. New Chem Mater 40(05):104–106+112

    Google Scholar 

  • Song N, Jiao D, Ding P, Cui S, Tang S, Shi L (2016) Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. J Mater Chem C 4:305–314

    CAS  Google Scholar 

  • Song N, Hou X, Chen L, Cui S, Shi L, Ding P (2017a) A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity. Acs Appl Mater Interfaces 9:17914–17922

    CAS  PubMed  Google Scholar 

  • Song N, Jiao J, Cui S, Hou X, Ding P, Shi L (2017b) Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management. Acs Appl Mater Interfaces 9(3):2924–2932

    CAS  PubMed  Google Scholar 

  • Sungjin P, Kyoung-Seok L, Gulay B, Weiwei C, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3):572–657

    Google Scholar 

  • Tang L, He M, Na X, Guan X, Zhang R, Zhang J, Gu J (2019) Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos Commun 16:5–10

    Google Scholar 

  • Wei Y, Xie H, Chen L, Zhao J, Li F (2015) Modified graphene papers with alkaline earth metal ions endowed with high heat transfer properties. Thin Solid Films 597:77–82

    Google Scholar 

  • Xuelin Y, Wenjin Y, Xin X, Feng C, Qiang F (2015) Amphiphilic, ultralight, and multifunctional graphene/nanofibrillated cellulose aerogel achieved by cation-induced gelation and chemical reduction. Nanoscale 7:3959–3964

    Google Scholar 

  • Yang H, Shan C, Li F, Zhang Q, Li N (2009) Convenient preparation of tunably loaded chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. J Mater Chem 19:8856–8860

    CAS  Google Scholar 

  • Yang W, Zhao Z, Wu K, Huang R, Liu T, Jiang H, Chen F, Fu Q (2017) Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J Mater Chem C 5(15):3748–3756

    CAS  Google Scholar 

  • Yang W, Gong Y, Zhao X, Liu T, Zhang Y, Chen F, Fu Q (2019) Strong and highly conductive graphene composite film based on the nanocellulose-assisted dispersion of expanded graphite and incorporation of poly (ethylene oxide). ACS Sustain Chem Eng 7:5045–5056

    CAS  Google Scholar 

  • Yao J, Chen S, Chen Y, Wang B, Pei Q, Wang H (2017) Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS Appl Mater Interfaces 9(24):20330–20339

    CAS  PubMed  Google Scholar 

  • Yao Y, Sun J, Zeng X, Sun R, Xu JB, Wong CP (2018) Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 14:1704044

    Google Scholar 

  • Zeng X, Xiong Y, Fu Q, Sun R, Xu J, Xu D, Wong CP (2017) Structure-induced variation of thermal conductivity in epoxy resin fibers. Nanoscale 9(30):10585–10589

    CAS  PubMed  Google Scholar 

  • Zhang Y, Li X (2017) Bio-inspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness. Nano Lett 17(11):6907–6915

    CAS  PubMed  Google Scholar 

  • Zhang K, Lu Y, Hao N, Nie S (2019) Enhanced thermal conductivity of cellulose nanofibril/aluminum nitride hybrid films by surface modification of aluminum nitride. Cellulose 26:8669–8683

    CAS  Google Scholar 

  • Zhao W, Kong J, Liu H, Zhuang Q, Gu J, Guo Z (2016) Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene. Nanoscale 8:19983–19994

    Google Scholar 

  • Zhen X, Haiyan S, Xiaoli Z, Chao G (2013) Ultrastrong fibers assembled from giant graphene oxide sheets. Adv Mater 25:188–193

    Google Scholar 

  • Zheng K, Sun F, Zhu J, Ma Y, Li X, Tang D, Wang F, Wang X (2016) Enhancing the thermal conductance of polymer and sapphire interface via self-assembled monolayer. ACS Nano 10(8):7792–7798

    CAS  PubMed  Google Scholar 

  • Zhou L, Yang Z, Luo W, Han X, Jang SN, Dai J, Yang B, Hu L (2016) A thermally conductive, electrical insulating, optically transparent Bi-layer nanopaper. ACS Appl Mater Interfaces 8(42):28838–28843

    CAS  PubMed  Google Scholar 

  • Zhu Y, Murali S, Cai W, Li X, Ji WS, Potts JR, Ruoff RS (2010) Graphene-based materials: graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    CAS  PubMed  Google Scholar 

  • Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374

    CAS  PubMed  Google Scholar 

  • Zhu C, Liu P, Mathew AP (2017a) Self-assembled TEMPO cellulose nanofibers - graphene oxide based biohybrids for water purification. ACS Appl Mater Interfaces 9(24):21048–21058

    CAS  PubMed  Google Scholar 

  • Zhu C, Soldatov A, Mathew A (2017b) Advanced microscopy and spectroscopy reveal the adsorption and clustering of Cu (II) onto TEMPO-oxidized cellulose nanofibers. Nanoscale 9(22):7419–7428

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC No. 51663003), Science and Technology Foundation of Guizhou Province (Grant No. [2019] 2166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanfu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, B., Xiong, Y., Li, Y. et al. Sandwich structured RGO/CNF/RGO composite films for superior mechanical and thermally conductive properties. Cellulose 27, 5055–5069 (2020). https://doi.org/10.1007/s10570-020-03150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03150-5

Keywords

Navigation