Skip to main content
Log in

Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Copper sulfide (CuxS) as a plasmonic solar photothermal semiconductor material that expands the light collection range by altering localized surface plasmon resonance (LSPR) to the near- to mid- infrared (IR) spectral region. The versatile synthesis strategies of CuxS nanostructure offer its variability of morphology and provide additional freedom in tuning the optical property. Particularly, nanocage (or nanoshell) has hybridized plasmon resonances as a result of super-positioned nanosphere and nanocavity, which extends its receiving range of solar spectrum and increases light-to-heat conversion rate. Here, we offer novel “nanoink” and “nanofilm” developed from colloidal Cu27S24 nanocages with excellent solar photothermal response. Via combining experimental measurement and theoretical calculation, we estimated the optical properties of covellite Cu27S24. And based on obtained dielectric functions, we then calculated its solar photothermal performance, which was further validated by our experimental measurement. The simulation results showed that hollow Cu27S24 nanocages have excellent solar photothermal performance, and exhibit much higher solar photothermal conversion efficiency than solid Cu27S24 nanospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2018, 118, 2927–2954.

    Article  CAS  Google Scholar 

  2. Tang, H. B.; Chen, C. J.; Huang, Z. L.; Bright, J.; Meng, G. W.; Liu, R. S.; Wu, N. Q. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective. J. Chem. Phys. 2020, 152, 220901.

    Article  CAS  Google Scholar 

  3. Li, J.; Wong, W. Y.; Tao, X. M. Recent advances in soft functional materials: Preparation, functions and applications. Nanoscale 2020, 12, 1281–1306.

    Article  CAS  Google Scholar 

  4. Jiang, N. N.; Zhuo, X. L.; Wang, J. F. Active plasmonics: Principles, structures, and applications. Chem. Rev. 2018, 118, 3054–3099.

    Article  CAS  Google Scholar 

  5. Sun, Y. H.; Jiang, L.; Zhong, L. B.; Jiang, Y. Y.; Chen, X. D. Towards active plasmonic response devices. Nano Res. 2015, 8, 406–417.

    Article  CAS  Google Scholar 

  6. Eustis, S.; El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217.

    Article  CAS  Google Scholar 

  7. Zhao, L. Y.; Shang, Q. Y.; Li, M. L.; Liang, Y.; Li, C.; Zhang, Q. Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Res. 2021, 14, 1937–1954.

    Article  CAS  Google Scholar 

  8. Zhang, C. Y.; Jia, F. C.; Li, Z. Y.; Huang, X.; Lu, G. Plasmon-generated hot holes for chemical reactions. Nano Res. 2020, 13, 3183–3197.

    Article  Google Scholar 

  9. Naik, G. V.; Shalaev, V. M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294.

    Article  CAS  Google Scholar 

  10. West, P.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808.

    Article  CAS  Google Scholar 

  11. Tang, X.; Ackerman, M. M.; Guyot-Sionnest, P. Thermal imaging with plasmon resonance enhanced HgTe colloidal quantum dot photovoltaic devices. ACS Nano 2018, 12, 7362–7370.

    Article  CAS  Google Scholar 

  12. Wu, J. B.; Wang, N.; Yan, X. D.; Wang, H. Emerging low-dimensional materials for mid-infrared detection. Nano Res. 2021, 14, 1863–1877.

    Article  CAS  Google Scholar 

  13. Agrawal, A.; Johns, R. W.; Milliron, D. J. Control of localized surface plasmon resonances in metal oxide nanocrystals. Annu. Rev. Mater. Res. 2017, 47, 1–31.

    Article  CAS  Google Scholar 

  14. Xi, M.; Reinhard, B. M. Localized surface plasmon coupling between mid-IR-resonant ITO nanocrystals. J. Phys. Chem. C 2018, 122, 5698–5704.

    Article  CAS  Google Scholar 

  15. Kuznetsov, A. S. Effect of proximity in arrays of plasmonic nanoantennas on hot spots density: Degenerate semiconductors vs. conventional metals. Plasmonics 2016, 11, 1487–1493.

    Article  CAS  Google Scholar 

  16. Liu, B.; Ma, Y. R.; Zhao, D. Y.; Xu, L. H.; Liu, F. S.; Zhou, W.; Guo, L. Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal. Nano Res. 2017, 10, 618–625.

    Article  CAS  Google Scholar 

  17. Abb, M.; Wang, Y. D.; Papasimakis, N.; de Groot, C. H.; Muskens, O. L. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Lett. 2014, 14, 346–352.

    Article  CAS  Google Scholar 

  18. Luther, J. M.; Jain, P. K.; Ewers, T.; Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 2011, 10, 361–366.

    Article  CAS  Google Scholar 

  19. Xu, Q.; Huang, B.; Zhao, Y. F.; Yan, Y. F.; Noufi, R.; Wei, S. H. Crystal and electronic structures of CuxS solar cell absorbers. Appl. Phys. Lett. 2012, 100, 061906.

    Article  Google Scholar 

  20. Azzam, S. A.; Boubnov, A.; Hoffman, A. S.; López-Ausens, T.; Chiang, N.; Canning, G.; Sautet, P.; Bare, S. R.; Simonetti, D. A. Insights into copper sulfide formation from Cu and S K edge XAS and DFT studies. Inorg. Chem. 2020, 59, 15276–15288.

    Article  CAS  Google Scholar 

  21. Huang, S.; Liu, J.; He, Q.; Chen, H. L.; Cui, J. B.; Xu, S. Y.; Zhao, Y. L.; Chen, C. Y.; Wang, L. Y. Smart Cu1.75S nanocapsules with high and stable photothermal efficiency for NIR photo-triggered drug release. Nano Res. 2015, 8, 4038–4047.

    Article  CAS  Google Scholar 

  22. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  CAS  Google Scholar 

  23. He, C. H.; Duan, D. L.; Low, J.; Bai, Y.; Jiang, Y. W.; Wang, X. Y.; Chen, S. M.; Long, R.; Song, L.; Xiong, Y. J. Cu2−xS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3532-7.

  24. Raj, S. I.; Jaiswal, A.; Uddin, I. Ultrasmall aqueous starch-capped CuS quantum dots with tunable localized surface plasmon resonance and composition for the selective and sensitive detection of mercury(II) ions. RSC Adv. 2020, 10, 14050–14059.

    Article  CAS  Google Scholar 

  25. Zhang, N. W.; Wang, C.; Liu, W. D.; Lei, X. F.; Zhao, J.; Huang, H.; Zhang, X. H.; Hu, Y. M.; Li, Y. B. Contronable synthesis and optical properties of semiconductor CuS nanoplates. J. Hubei Univ. (Nat. Sci.) 2020, 42, 61–66, 71.

    Google Scholar 

  26. Shao, X.; Zhang, T. Y.; Li, B.; Wu, Y.; Ma, X. Y.; Wang, J. C.; Jiang, S. Cu-deficient plasmonic Cu2−xS nanocrystals induced tunable photocatalytic activities. CrystEngComm 2020, 22, 678–685.

    Article  CAS  Google Scholar 

  27. Jiang, L. S.; Wang, K.; Wu, X. Y.; Zhang, G. K. Highly enhanced full solar spectrum-driven photocatalytic CO2 reduction performance in Cu2−xS/g-C3N4 composite: Efficient charge transfer and mechanism insight. Sol. RRL 2021, 5, 2000326.

    Article  CAS  Google Scholar 

  28. Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422.

    Article  CAS  Google Scholar 

  29. Gómez, D. E.; Teo, Z. Q.; Altissimo, M.; Davis, T. J.; Earl, S.; Roberts, A. The dark side of plasmonics. Nano Lett. 2013, 13, 3722–3728.

    Article  Google Scholar 

  30. Zhou, H. P.; Pan, Z. Z.; Dedo, M. I.; Guo, Z. Y. High-efficiency and high-precision identification of transmitting orbital angular momentum modes in atmospheric turbulence based on an improved convolutional neural network. J. Opt. 2021, 23, 065701.

    Article  Google Scholar 

  31. Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O. M.; Iatì, M. A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys.: Condens. Matter 2017, 29, 203002.

    Google Scholar 

  32. Jaque, D.; Maestro, L. M.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; Rodríguez, E. M.; Solé, J. G. Nanoparticles for photothermal therapies. Nanoscale 2014, 6, 9494–9530.

    Article  CAS  Google Scholar 

  33. Takéuchi, Y.; Kudoh, Y.; Sato, G. The crystal structure of covellite CuS under high pressure up to 33 kbar. Z. Krist. 1985, 173, 119–128.

    Article  Google Scholar 

  34. Qu, Y. N.; Xu, X. J.; Huang, R. L.; Qi, W.; Su, R. X.; He, Z. M. Enhanced photocatalytic degradation of antibiotics in water over functionalized N, S-doped carbon quantum dots embedded ZnO nanoflowers under sunlight irradiation. Chem. Eng. J. 2020, 382, 123016.

    Article  CAS  Google Scholar 

  35. Nie, G. D.; Zhang, L.; Lu, X. F.; Bian, X. J.; Sun, W. N.; Wang, C. A one-pot and in situ synthesis of CuS-graphene nanosheet composites with enhanced peroxidase-like catalytic activity. Dalton Trans. 2013, 42, 14006–14013.

    Article  CAS  Google Scholar 

  36. Pang, X. C.; He, Y. J.; Jung, J. H.; Lin, Z. Q. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science 2016, 353, 1268–1272.

    Article  CAS  Google Scholar 

  37. Pang, M. L.; Zeng, H. C. Highly ordered self-assemblies of submicrometer Cu2O spheres and their hollow chalcogenide derivatives. Langmuir 2010, 26, 5963–5970.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the finical support from the Key Laboratory Functional Molecular Solids, Ministry of Education (No. FMS202002), the National Key Research and Development Project (No. 2020YFA0210703), the National Natural Science Foundation of China (Nos. U2032158, U2032159, and 62005292), the Key Research and Development Program of Anhui Province (Nos. S202104a05020085 and 201904a05020009), the Science and Technology Service Network Initiative of Chinese Academy of China (grant No. KFJ-STS-ZDTP-080), the Collaborative Innovation Program of Hefei Science Center, CAS (No. 2020HSC-CIP003), the Major Scientific and the CASHIPS Director’s Fund (No. YZJJZX202015), and the Technological Innovation Projects of Shandong Province (No. 2019JZZY020243).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Xi, Shudong Zhang or Zhenyang Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, M., Xu, L., Li, N. et al. Plasmonic Cu27S24 nanocages for novel solar photothermal nanoink and nanofilm. Nano Res. 15, 3161–3169 (2022). https://doi.org/10.1007/s12274-021-3880-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3880-3

Keywords

Navigation