Skip to main content
Log in

Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors not only hold great promises for the development of ultra-thin optoelectronic devices with low-energy consumption, but also provide ideal platforms to explore and tailor light-matter interaction, e.g., the exciton-photon interaction, at the atomic level, due to their atomic thickness, large exciton binding energy, and unique valley properties. In recent years, the exciton-photon interactions in TMDC semiconductor microcavities, including the strong exciton-photon coupling and lasing, have drawn increasing attention, which may open up new application prospects for transparent, on-chip coherent, and quantum light sources. Herein, we review the research progresses of strong exciton-photon interaction and lasing of TMDC semiconductors. First, we introduce the electronic structure, exciton, and emission properties of semiconducting TMDCs in the weak exciton-photon coupling regime. Next, the progresses on strong exciton-photon interaction and exciton-polaritons of these TMDCs are discussed from the aspects of photophysics, materials and fabrications, spectroscopies, and controls. Further, the progresses on TMDC lasers are introduced in the aspects of cavity types and materials, and finally, the challenges and prospects for these fields are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ning, C. Z. Semiconductor nanolasers and the size-energy-efficiency challenge: A review. Adv. Photon. 2019, 1, 014002.

    Google Scholar 

  2. Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 2009, 97, 1166–1185.

    CAS  Google Scholar 

  3. Khajavikhan, M.; Simic, A.; Katz, M.; Lee, J. H.; Slutsky, B.; Mizrahi, A.; Lomakin, V.; Fainman, Y. Thresholdless nanoscale coaxial lasers. Nature 2012, 482, 204–207.

    CAS  Google Scholar 

  4. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

    CAS  Google Scholar 

  5. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    CAS  Google Scholar 

  6. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 2016, 10, 216–226.

    CAS  Google Scholar 

  7. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

    CAS  Google Scholar 

  8. Pu, J.; Takenobu, T. Monolayer transition metal dichalcogenides as light sources. Adv. Mater. 2018, 30, 1707627.

    Google Scholar 

  9. Zheng, W. H.; Jiang, Y.; Hu, X. L.; Li, H. L.; Zeng, Z. X. S.; Wang, X.; Pan, A. L. Light emission properties of 2D transition metal dichalcogenides: Fundamentals and applications. Adv. Opt. Mater. 2018, 6, 1800420.

    Google Scholar 

  10. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Google Scholar 

  11. Fang, Z. W.; Xing, Q. Y.; Fernandez, D.; Zhang, X.; Yu, G. H. A mini review on two-dimensional nanomaterial assembly. Nano Res. 2020, 13, 1179–1190.

    Google Scholar 

  12. Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.

    Google Scholar 

  13. Yu, H.; Liao, M. Z.; Zhao, W. J.; Liu, G. D.; Zhou, X. J.; Wei, Z.; Xu, X. Z.; Liu, K. H.; Hu, Z. H.; Deng, K. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 2017, 11, 12001–12007.

    CAS  Google Scholar 

  14. Erben, D.; Steinhoff, A.; Gies, C.; Schönhoff, G.; Wehling, T. O.; Jahnke, F. Excitation-induced transition to indirect band gaps in atomically thin transition-metal dichalcogenide semiconductors. Phys. Rev. B 2018, 98, 035434.

    CAS  Google Scholar 

  15. Liu, L.; Yao, H. Z.; Li, H.; Wang, Z. C.; Shi, Y. M. Recent advances of low-dimensional materials in lasing applications. FlatChem 2018, 10, 22–38.

    Google Scholar 

  16. Berghäuser, G.; Bernal-Villamil, I.; Schmidt, R.; Schneider, R.; Niehues, I.; Erhart, P.; Michaelis de Vasconcellos, S.; Bratschitsch, R.; Knorr, A.; Malic, E. Inverted valley polarization in optically excited transition metal dichalcogenides. Nat. Commun. 2018, 9, 971.

    Google Scholar 

  17. Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.

    CAS  Google Scholar 

  18. Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.

    CAS  Google Scholar 

  19. Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

    CAS  Google Scholar 

  20. Liu, Y. P.; Gao, Y. J.; Zhang, S.; He, J.; Yu, J.; Liu, Z. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

    CAS  Google Scholar 

  21. Krasnok, A.; Lepeshov, S.; Alú, A. Nanophotonics with 2D transition metal dichalcogenides [Invited]. Opt. Express 2018, 26, 15972–15994.

    CAS  Google Scholar 

  22. Lindemann, M.; Xu, G. F.; Pusch, T.; Michalzik, R.; Hofmann, M. R.; Žutić, I.; Gerhardt, N. C. Ultrafast spin-lasers. Nature 2019, 568, 212–215.

    CAS  Google Scholar 

  23. Hu, F. R.; Fei, Z. Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv. Opt. Mater. 2020, 8, 1901003.

    CAS  Google Scholar 

  24. Latini, S.; Ronca, E.; De Giovannini, U.; Hübener, H.; Rubio, A. Cavity control of excitons in two-dimensional materials. Nano Lett. 2019, 19, 3473–3479.

    CAS  Google Scholar 

  25. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    CAS  Google Scholar 

  26. Koperski, M.; Nogajewski, K.; Arora, A.; Cherkez, V.; Mallet, P.; Veuillen, J. Y.; Marcus, J.; Kossacki, P.; Potemski, M. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol. 2015, 10, 503–506.

    CAS  Google Scholar 

  27. Shi, J.; Yu, P.; Liu, F. C.; He, P.; Wang, R.; Qin, L.; Zhou, J. B.; Li, X.; Zhou, J. D.; Sui, X. Y. et al. 3R MoS2 with broken inversion symmetry: A promising ultrathin nonlinear optical device. Adv. Mater. 2017, 29, 1701486.

    Google Scholar 

  28. Yazdani, S.; Yarali, M.; Cha, J. J. Recent progress on in situ characterizations of electrochemically intercalated transition metal dichalcogenides. Nano Res. 2019, 12, 2126–2139.

    CAS  Google Scholar 

  29. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    CAS  Google Scholar 

  30. Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

    Google Scholar 

  31. Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.

    CAS  Google Scholar 

  32. Xu, L.; Zhao, L. Y.; Wang, Y. S.; Zou, M. C.; Zhang, Q.; Cao, A. Y. Analysis of photoluminescence behavior of high-quality single-layer MoS2. Nano Res. 2019, 12, 1619–1624.

    CAS  Google Scholar 

  33. Drüppel, M.; Deilmann, T.; Krüger, P.; Rohlfing, M. Diversity of trion states and substrate effects in the optical properties of an MoS2 monolayer. Nat. Commun. 2017, 8, 2117.

    Google Scholar 

  34. Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

    CAS  Google Scholar 

  35. Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

    Google Scholar 

  36. You, Y. M.; Zhang, X. X.; Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R.; Heinz, T. F. Observation of biexcitons in monolayer WSe2. Nat. Phys. 2015, 11, 477–481.

    CAS  Google Scholar 

  37. He, Z. Y.; Xu, W. S.; Zhou, Y. Q.; Wang, X. C.; Sheng, Y. W.; Rong, Y. M.; Guo, S. Q.; Zhang, J. Y.; Smith, J. M.; Warner, J. H. Biexciton formation in bilayer tungsten disulfide. ACS Nano 2016, 10, 2176–2183.

    CAS  Google Scholar 

  38. Hao, K.; Specht, J. F.; Nagler, P.; Xu, L. X.; Tran, K.; Singh, A.; Dass, C. K.; Schüller, C.; Korn, T.; Richter, M. et al. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun. 2017, 8, 15552.

    CAS  Google Scholar 

  39. Li, Z. P.; Wang, T. M.; Lu, Z. G.; Jin, C. H.; Chen, Y. W.; Meng, Y. Z.; Lian, Z.; Taniguchi, T.; Watanabe, K.; Zhang, S. B. et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2. Nat. Commun. 2018, 9, 3719.

    Google Scholar 

  40. Fogler, M. M.; Butov, L. V.; Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 2014, 5, 4555.

    CAS  Google Scholar 

  41. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    CAS  Google Scholar 

  42. Huang, S. X.; Ling, X.; Liang, L. B.; Kong, J.; Terrones, H.; Meunier, V.; Dresselhaus, M. S. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano. Lett. 2014, 14, 5500–5508.

    CAS  Google Scholar 

  43. Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. B.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.

    CAS  Google Scholar 

  44. Kunstmann, J.; Mooshammer, F.; Nagler, P.; Chaves, A.; Stein, F.; Paradiso, N.; Plechinger, G.; Strunk, C.; Schüller, C.; Seifert, G. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 2018, 14, 801–805.

    CAS  Google Scholar 

  45. Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.

    CAS  Google Scholar 

  46. Rivera, P.; Yu, H. Y.; Seyler, K. L.; Wilson, N. P.; Yao, W.; Xu, X. D. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2018, 13, 1004–1015.

    CAS  Google Scholar 

  47. Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. ACS Nano 2014, 8, 12717–12724.

    CAS  Google Scholar 

  48. Zheng, W. H.; Zheng, B. Y.; Yan, C. L.; Liu, Y.; Sun, X. X.; Qi, Z. Y.; Yang, T. F.; Jiang, Y.; Huang, W.; Fan, P. et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 2019, 6, 1802204.

    Google Scholar 

  49. Li, L. H.; Zheng, W. H.; Ma, C.; Zhao, H. P.; Jiang, F.; Ouyang, Y.; Zheng, B. Y.; Fu, X. W.; Fan, P.; Zheng, M. et al. Wavelength-tunable interlayer exciton emission at the near-infrared region in van der Waals semiconductor heterostructures. Nano Lett. 2020, 20, 3361–3368.

    CAS  Google Scholar 

  50. Ye, Z. L.; Cao, T.; O’Brien, K.; Zhu, H. Y.; Yin, X. B.; Wang, Y.; Louie, S. G.; Zhang, X. Probing excitonic dark states in single-layer tungsten disulphide. Nature 2014, 513, 214–218.

    CAS  Google Scholar 

  51. Feng, J.; Qian, X. F.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 2012, 6, 866–872.

    CAS  Google Scholar 

  52. Klots, A. R.; Newaz, A. K. M.; Wang, B.; Prasai, D.; Krzyzanowska, H.; Lin, J. H.; Caudel, D.; Ghimire, N. J.; Yan, J.; Ivanov, B. L. et al. Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci. Rep. 2014, 4, 6608.

    CAS  Google Scholar 

  53. Zhu, B. R.; Zeng, H. L.; Dai, J. F.; Gong, Z. R.; Cui, X. D. Anomalously robust valley polarization and valley coherence in bilayer WS2. Proc. Natl. Acad. Sci. USA 2014, 111, 11606–11611.

    CAS  Google Scholar 

  54. Pei, J. J.; Yang, J.; Wang, X. B.; Wang, F.; Mokkapati, S.; Lü, T. Y.; Zheng, J. C.; Qin, Q. H.; Neshev, D.; Tan, H. H. et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano 2017, 11, 7468–7475.

    CAS  Google Scholar 

  55. Mai, C.; Barrette, A.; Yu, Y. F.; Semenov, Y. G.; Kim, K. W.; Cao, L. Y.; Gundogdu, K. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 2014, 14, 202–206.

    CAS  Google Scholar 

  56. Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.

    CAS  Google Scholar 

  57. Singh, A.; Moody, G.; Tran, K.; Scott, M. E.; Overbeck, V.; Berghäuser, G.; Schaibley, J.; Seifert, E.; Pleskot, D.; Gabor, N. M. et al. Trion formation dynamics in monolayer transition metal dichalcogenides. Phys. Rev. B 2016, 93, 041401(R).

    Google Scholar 

  58. Yang, J.; Lü, T. Y.; Myint, Y. W.; Pei, J. J.; Macdonald, D.; Zheng, J. C.; Lu, Y. R. Robust excitons and trions in monolayer MoTe2. ACS Nano 2015, 9, 6603–6609.

    CAS  Google Scholar 

  59. Li, J. H.; Bing, D.; Wu, Z. T.; Wu, G. Q.; Bai, J.; Du, R. X.; Qi, Z. Q. Thickness-dependent excitonic properties of atomically thin 2H-MoTe2. Chin. Phys. B 2020, 29, 17802.

    CAS  Google Scholar 

  60. Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep. 2015, 5, 9218.

    Google Scholar 

  61. Plechinger, G.; Nagler, P.; Kraus, J.; Paradiso, N.; Strunk, C.; Schüller, C.; Korn, T. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi 2015, 9, 457–461.

    CAS  Google Scholar 

  62. Chowdhury, R. K.; Nandy, S.; Bhattacharya, S.; Karmakar, M.; Bhaktha, S. N. B.; Datta, P. K.; Taraphder, A.; Ray, S. K. Ultrafast time-resolved investigations of excitons and biexcitons at room temperature in layered WS2. 2D Mater. 2018, 6, 015011.

    Google Scholar 

  63. He, K. L.; Kumar, N.; Zhao, L.; Wang, Z. F.; Mak, K. F.; Zhao, H.; Shan, J. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 2014, 113, 026803.

    CAS  Google Scholar 

  64. Huang, J. N.; Hoang, T. B.; Mikkelsen, M. H. Probing the origin of excitonic states in monolayer WSe2. Sci. Rep. 2016, 6, 22414.

    CAS  Google Scholar 

  65. Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.

    CAS  Google Scholar 

  66. Liu, H. J.; Jiao, L.; Xie, L.; Yang, F.; Chen, J. L.; Ho, W. K.; Gao, C. L.; Jia, J. F.; Cui, X. D.; Xie, M. H. Molecular-beam epitaxy of monolayer and bilayer WSe2: A scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Mater. 2015, 2, 034004.

    Google Scholar 

  67. Amin, B.; Singh, N.; Schwingenschlögl, U. Heterostructures of transition metal dichalcogenides. Phys. Rev. B 2015, 92, 075439.

    Google Scholar 

  68. Koperski, M.; Molas, M. R.; Arora, A.; Nogajewski, K.; Slobodeniuk, A. O.; Faugeras, C.; Potemski, M. Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles. Nanophotonics 2017, 6, 1289–1308.

    CAS  Google Scholar 

  69. Kim, M. S.; Yun, S. J.; Lee, Y.; Seo, C.; Han, G. H.; Kim, K. K.; Lee, Y. H.; Kim, J. Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano 2016, 10, 2399–2405.

    CAS  Google Scholar 

  70. Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

    CAS  Google Scholar 

  71. Singha, S. S.; Nandi, D.; Singha, A. Tuning the photoluminescence and ultrasensitive trace detection properties of few-layer MoS2 by decoration with gold nanoparticles. RSC Adv. 2015, 5, 24188–24193.

    CAS  Google Scholar 

  72. Datta, I.; Chae, S. H.; Bhatt, G. R.; Tadayon, M. A.; Li, B. C.; Yu, Y. L.; Park, C.; Park, J.; Cao, L. Y.; Basov, D. N. et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photon. 2020, 14, 256–262.

    CAS  Google Scholar 

  73. Shang, J. Z.; Shen, X. N.; Cong, C. X.; Peimyoo, N.; Cao, B. C.; Eginligil, M.; Yu, T. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015, 9, 647–655.

    CAS  Google Scholar 

  74. Zhao, L. Y.; Wang, X. W.; Zhang, Z. P.; Yang, P. F.; Chen, J.; Chen, Y. Q.; Wang, H.; Shang, Q. Y.; Zhang, Y. Y.; Zhang, Y. F. et al. Surface state mediated interlayer excitons in a 2D nonlayered-layered semiconductor heterojunction. Adv. Electron. Mater. 2017, 3, 1700373.

    Google Scholar 

  75. Shi, J.; Li, Y. Z.; Zhang, Z. P.; Feng, W. Q.; Wang, Q.; Ren, S. L.; Zhang, J.; Du, W. N.; Wu, X. X.; Sui, X. Y. et al. Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics 2019, 6, 3082–3091.

    CAS  Google Scholar 

  76. Ubrig, N.; Ponomarev, E.; Zultak, J.; Domaretskiy, D.; Zólyomi, V.; Terry, D.; Howarth, J.; Gutiérrez-Lezama, I.; Zhukov, A.; Kudrynskyi, Z. R. et al. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat. Mater. 2020, 19, 299–304.

    CAS  Google Scholar 

  77. Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.

    Google Scholar 

  78. Jiang, T.; Liu, H. R.; Huang, D.; Zhang, S.; Li, Y. G.; Gong, X. G.; Shen, Y. R.; Liu, W. T.; Wu, S. W. Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 2014, 9, 825–829.

    CAS  Google Scholar 

  79. Wang, G.; Bouet, L.; Lagarde, D.; Vidal, M.; Balocchi, A.; Amand, T.; Marie, X.; Urbaszek, B. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys. Rev. B 2014, 90, 075413.

    CAS  Google Scholar 

  80. Sie, E. J.; McIver, J. W.; Lee, Y. H.; Fu, L.; Kong, J.; Gedik, N. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 2015, 14, 290–294.

    CAS  Google Scholar 

  81. Hao, K.; Moody, G.; Wu, F. C.; Dass, C. K.; Xu, L. X.; Chen, C. H.; Sun, L. Y.; Li, M. Y.; Li, L. J.; MacDonald, A. H. et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys. 2016, 12, 677–682.

    CAS  Google Scholar 

  82. Schneider, C.; Glazov, M. M.; Korn, T.; Höfling, S.; Urbaszek, B. Two-dimensional semiconductors in the regime of strong lightmatter coupling. Nat. Commun. 2018, 9, 2695.

    Google Scholar 

  83. Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

    CAS  Google Scholar 

  84. Wang, Y. L.; Cong, C. X.; Shang, J. Z.; Eginligil, M.; Jin, Y. Q.; Li, G.; Chen, Y.; Peimyoo, N.; Yu, T. Unveiling exceptionally robust valley contrast in AA- and AB-stacked bilayer WS2. Nanoscale Horiz. 2019, 4, 396–403.

    CAS  Google Scholar 

  85. Wu, S. F.; Ross, J. S.; Liu, G. B.; Aivazian, G.; Jones, A.; Fei, Z. Y.; Zhu, W. G.; Xiao, D.; Yao, W.; Cobden, D. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 2013, 9, 149–153.

    CAS  Google Scholar 

  86. Yan, A. M.; Ong, C. S.; Qiu, D. Y.; Ophus, C.; Ciston, J.; Merino, C.; Louie, S. G.; Zettl, A. Dynamics of symmetry-breaking stacking boundaries in bilayer MoS2. J. Phys. Chem. C 2017, 121, 22559–22566.

    CAS  Google Scholar 

  87. Jones, A. M.; Yu, H. Y.; Ross, J. S.; Klement, P.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 2014, 10, 130–134.

    CAS  Google Scholar 

  88. Armani, D. K.; Kippenberg, T. J.; Spillane, S. M.; Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 2003, 421, 925–928.

    CAS  Google Scholar 

  89. Wang, L.; Zhou, X. F.; Yang, S.; Huang, G. S.; Mei, Y. F. 2D-material-integrated whispering-gallery-mode microcavity. Photonics Res. 2019, 7, 905–916.

    Google Scholar 

  90. Kim, S.; Fröch, J. E.; Christian, J.; Straw, M.; Bishop, J.; Totonjian, D.; Watanabe, K.; Taniguchi, T.; Toth, M.; Aharonovich, I. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 2018, 9, 2623.

    Google Scholar 

  91. Javerzac-Galy, C.; Kumar, A.; Schilling, R. D.; Piro, N.; Khorasani, S.; Barbone, M.; Goykhman, I.; Khurgin, J. B.; Ferrari, A. C.; Kippenberg, T. J. Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators. Nano Lett. 2018, 18, 3138–3146.

    CAS  Google Scholar 

  92. Hammer, S.; Mangold, H. M.; Nguyen, A. E.; Martinez-Ta, D.; Naghibi Alvillar, S.; Bartels, L.; Krenner, H. J. Scalable and transferfree fabrication of MoS2/SiO2 hybrid nanophotonic cavity arrays with quality factors exceeding 4000. Sci. Rep. 2017, 7, 7251.

    Google Scholar 

  93. Reed, J. C.; Malek, S. C.; Yi, F.; Naylor, C. H.; Charlie Johnson, A. T.; Cubukcu, E. Photothermal characterization of MoS2 emission coupled to a microdisk cavity. Appl. Phys. Lett. 2016, 109, 193109.

    Google Scholar 

  94. Fryett, T. K.; Seyler, K. L.; Zheng, J. J.; Liu, C. H.; Xu, X. D.; Majumdar, A. Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe2. 2D Mater. 2016, 4, 015031.

    Google Scholar 

  95. Day, J. K.; Chung, M. H.; Lee, Y. H.; Menon, V. M. Microcavity enhanced second harmonic generation in 2D MoS2. Opt. Mater. Express 2016, 6, 2360–2365.

    CAS  Google Scholar 

  96. Schwarz, S.; Dufferwiel, S.; Walker, P. M.; Withers, F.; Trichet, A. A. P.; Sich, M.; Li, F.; Chekhovich, E. A.; Borisenko, D. N.; Kolesnikov, N. N. et al. Two-dimensional metal-chalcogenide films in tunable optical microcavities. Nano Lett. 2014, 14, 7003–7008.

    CAS  Google Scholar 

  97. Gan, X. T.; Gao, Y. D.; Mak, K. F.; Yao, X. W.; Shiue, R. J.; van der Zande, A.; Trusheim, M. E.; Hatami, F.; Heinz, T. F.; Hone, J. et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 2013, 103, 181119.

    Google Scholar 

  98. Liu, T.; Qiu, H. D.; Yin, T. T.; Huang, C. C.; Liang, G. Z.; Qiang, B.; Shen, Y. D.; Liang, H. K.; Zhang, Y.; Wang, H. et al. Enhanced lightmatter interaction in atomically thin MoS2 coupled with 1D photonic crystal nanocavity. Opt. Express 2017, 25, 14691–14696.

    CAS  Google Scholar 

  99. Husko, C.; Kang, J.; Moille, G.; Wood, J. D.; Han, Z.; Gosztola, D.; Ma, X. D.; Combrié, S.; De Rossi, A.; Hersam, M. C. et al. Siliconphosphorene nanocavity-enhanced optical emission at telecommunications wavelengths. Nano Lett. 2018, 18, 6515–6520.

    CAS  Google Scholar 

  100. Reed, J. C.; Zhu, A. Y.; Zhu, H.; Yi, F.; Cubukcu, E. Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter. Nano Lett. 2015, 15, 1967–1971.

    CAS  Google Scholar 

  101. Wei, G. H.; Stanev, T. K.; Czaplewski, D. A.; Jung, I. W.; Stern, N. P. Silicon-nitride photonic circuits interfaced with monolayer MoS2. Appl. Phys. Lett. 2015, 107, 091112.

    Google Scholar 

  102. Mi, Y.; Zhang, Z. P.; Zhao, L. Y.; Zhang, S.; Chen, J.; Ji, Q. Q.; Shi, J. P.; Zhou, X. B.; Wang, R.; Shi, J. et al. Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method. Small 2017, 13, 1701694.

    Google Scholar 

  103. Chen, J. H.; Tan, J.; Wu, G. X.; Zhang, X. J.; Xu, F.; Lu, Y. Q. Tunable and enhanced light emission in hybrid WS2-optical-fibernanowire structures. Light-Sci. Appl. 2019, 8, 8.

    Google Scholar 

  104. Yi, F.; Ren, M. L.; Reed, J. C.; Zhu, H.; Hou, J. C.; Naylor, C. H.; Johnson, A. T. C.; Agarwal, R.; Cubukcu, E. Optomechanical enhancement of doubly resonant 2D optical nonlinearity. Nano Lett. 2016, 16, 1631–1636.

    CAS  Google Scholar 

  105. Du, W. N.; Zhang, S.; Zhang, Q.; Liu, X. F. Recent progress of strong exciton-photon coupling in lead halide perovskites. Adv. Mater. 2018, 30, 1804894.

    Google Scholar 

  106. Byrnes, T.; Kim, N. Y.; Yamamoto, Y. Exciton-polariton condensates. Nat. Phys. 2014, 10, 803–813.

    CAS  Google Scholar 

  107. Li, Q.; Li, C.; Shang, Q. Y.; Zhao, L. Y.; Zhang, S.; Gao, Y.; Liu, X. F.; Wang, X.; Zhang, Q. Lasing from reduced dimensional perovskite microplatelets: Fabry-Pérot or whispering-gallery-mode? J. Chem. Phys. 2019, 151, 211101.

    Google Scholar 

  108. Liu, X. Z.; Bao, W.; Li, Q. W.; Ropp, C.; Wang, Y.; Zhang, X. Control of coherently coupled exciton polaritons in monolayer tungsten disulphide. Phys. Rev. Lett. 2017, 119, 027403.

    Google Scholar 

  109. Hu, F.; Luan, Y.; Scott, M. E.; Yan, J.; Mandrus, D. G.; Xu, X.; Fei, Z. Imaging exciton-polariton transport in MoSe2 waveguides. Nat. Photon. 2017, 11, 356–360.

    CAS  Google Scholar 

  110. Du, W. N.; Zhang, S.; Shi, J.; Chen, J.; Wu, Z. Y.; Mi, Y.; Liu, Z. X.; Li, Y. Z.; Sui, X. Y.; Wang, R. et al. Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics 2018, 5, 2051–2059.

    CAS  Google Scholar 

  111. Shang, Q. Y.; Zhang, S.; Liu, Z.; Chen, J.; Yang, P. F.; Li, C.; Li, W.; Zhang, Y. F.; Xiong, Q. H.; Liu, X. F. et al. Surface plasmon enhanced strong exciton-photon coupling in hybrid inorganic-organic perovskite nanowires. Nano Lett. 2018, 18, 3335–3343.

    CAS  Google Scholar 

  112. Zhang, S.; Shang, Q. Y.; Du, W. N.; Shi, J.; Wu, Z. Y.; Mi, Y.; Chen, J.; Liu, F. J.; Li, Y. Z.; Liu, M. et al. Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires. Adv. Opt. Mater. 2018, 6, 1701032.

    Google Scholar 

  113. Shang, Q. Y.; Li, C.; Zhang, S.; Liang, Y.; Liu, Z.; Liu, X. F.; Zhang, Q. Enhanced optical absorption and slowed light of reduced-dimensional CsPbBr3 nanowire crystal by exciton-polariton. Nano Lett. 2020, 20, 1023–1032.

    CAS  Google Scholar 

  114. Liu, X. Z.; Galfsky, T.; Sun, Z.; Xia, F. N.; Lin, E. C.; Lee, Y. H.; Kéna-Cohen, S.; Menon, V. M. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photon. 2015, 9, 30–34.

    CAS  Google Scholar 

  115. Dufferwiel, S.; Schwarz, S.; Withers, F.; Trichet, A. A. P.; Li, F.; Sich, M.; Del Pozo-Zamudio, O.; Clark, C.; Nalitov, A.; Solnyshkov, D. D. et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 2015, 6, 8579.

    CAS  Google Scholar 

  116. Flatten, L. C.; He, Z.; Coles, D. M.; Trichet, A. A. P.; Powell, A. W.; Taylor, R. A.; Warner, J. H.; Smith, J. M. Room-temperature exciton-polaritons with two-dimensional WS2. Sci. Rep. 2016, 6, 33134.

    CAS  Google Scholar 

  117. Lundt, N.; Klembt, S.; Cherotchenko, E.; Betzold, S.; Iff, O.; Nalitov, A. V.; Klaas, M.; Dietrich, C. P.; Kavokin, A. V.; Höfling, S. et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat. Commun. 2016, 7, 13328.

    CAS  Google Scholar 

  118. Wang, Q.; Sun, L. X.; Zhang, B.; Chen, C. Q.; Shen, X. C.; Lu, W. Direct observation of strong light-exciton coupling in thin WS2 flakes. Opt. Express 2016, 24, 7151–7157.

    CAS  Google Scholar 

  119. Wang, S. J.; Li, S. L.; Chervy, T.; Shalabney, A.; Azzini, S.; Orgiu, E.; Hutchison, J. A.; Genet, C.; Samori, P.; Ebbesen, T. W. Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Lett. 2016, 16, 4368–4374.

    CAS  Google Scholar 

  120. Chen, Y. J.; Cain, J. D.; Stanev, T. K.; Dravid, V. P.; Stern, N. P. Valley-polarized exciton-polaritons in a monolayer semiconductor. Nat. Photon. 2017, 11, 431–435.

    CAS  Google Scholar 

  121. Dufferwiel, S.; Lyons, T. P.; Solnyshkov, D. D.; Trichet, A. A. P.; Withers, F.; Schwarz, S.; Malpuech, G.; Smith, J. M.; Novoselov, K. S.; Skolnick, M. S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photon. 2017, 11, 497–501.

    CAS  Google Scholar 

  122. Lundt, N.; Stoll, S.; Nagler, P.; Nalitov, A.; Klembt, S.; Betzold, S.; Goddard, J.; Frieling, E.; Kavokin, A. V.; Schüller, C. et al. Observation of macroscopic valley-polarized monolayer excitonpolaritons at room temperature. Phys. Rev. B 2017, 96, 241403.

    Google Scholar 

  123. Hu, D. B.; Yang, X. X.; Li, C.; Liu, R. N.; Yao, Z. H.; Hu, H.; Corder, S. N. G.; Chen, J. N.; Sun, Z. P.; Liu, M. K. et al. Probing optical anisotropy of nanometer-thin van der Waals microcrystals by near-field imaging. Nat. Commun. 2017, 8, 1471.

    Google Scholar 

  124. Hu, T.; Wang, Y. F.; Wu, L.; Zhang, L.; Shan, Y. W.; Lu, J.; Wang, J.; Luo, S.; Zhang, Z.; Liao, L. M. et al. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons. Appl. Phys. Lett. 2017, 110, 051101.

    Google Scholar 

  125. Dufferwiel, S.; Lyons, T. P.; Solnyshkov, D. D.; Trichet, A. A. P.; Catanzaro, A.; Withers, F.; Malpuech, G.; Smith, J. M.; Novoselov, K. S.; Skolnick, M. S. et al. Valley coherent exciton-polaritons in a monolayer semiconductor. Nat. Commun. 2018, 9, 4797.

    CAS  Google Scholar 

  126. Han, X. B.; Wang, K.; Xing, X. Y.; Wang, M. Y.; Lu, P. X. Rabi splitting in a plasmonic nanocavity coupled to a WS2 monolayer at room temperature. ACS Photonics 2018, 5, 3970–3976.

    CAS  Google Scholar 

  127. Ding, B. Y.; Zhang, Z. P.; Chen, Y. H.; Zhang, Y. F.; Blaikie, R. J.; Qiu, M. Tunable valley polarized plasmon-exciton polaritons in two-dimensional semiconductors. ACS Nano 2019, 13, 1333–1341.

    CAS  Google Scholar 

  128. Mrejen, M.; Yadgarov, L.; Levanon, A.; Suchowski, H. Transient exciton-polariton dynamics in WSe2 by ultrafast near-field imaging. Sci. Adv. 2019, 5, eaat9618.

    CAS  Google Scholar 

  129. Munkhbat, B.; Baranov, D. G.; Stührenberg, M.; Wersäll, M.; Bisht, A.; Shegai, T. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photonics 2019, 6, 139–147.

    CAS  Google Scholar 

  130. Zhang, L.; Gogna, R.; Burg, W.; Tutuc, E.; Deng, H. Photoniccrystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 2018, 9, 713.

    Google Scholar 

  131. Zheng, D.; Zhang, S. P.; Deng, Q.; Kang, M.; Nordlander, P.; Xu, H. X. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett. 2017, 17, 3809–3814.

    CAS  Google Scholar 

  132. Stührenberg, M.; Munkhbat, B.; Baranov, D. G.; Cuadra, J.; Yankovich, A. B.; Antosiewicz, T. J.; Olsson, E.; Shegai, T. Strong light-matter coupling between plasmons in individual gold bi-pyramids and excitons in mono- and multilayer WSe2. Nano Lett. 2018, 18, 5938–5945.

    Google Scholar 

  133. Kleemann, M. E.; Chikkaraddy, R.; Alexeev, E. M.; Kos, D.; Carnegie, C.; Deacon, W.; de Pury, A. C.; Große, C.; de Nijs, B.; Mertens, J. et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun. 2017, 8, 1296.

    Google Scholar 

  134. Bisht, A.; Cuadra, J.; Wersall, M.; Canales, A.; Antosiewicz, T. J.; Shegai, T. Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems. Nano Lett. 2019, 19, 189–196.

    CAS  Google Scholar 

  135. Barachati, F.; Fieramosca, A.; Hafezian, S.; Gu, J.; Chakraborty, B.; Ballarini, D.; Martinu, L.; Menon, V.; Sanvitto, D.; Kéna-Cohen, S. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol. 2018, 13, 906–909.

    CAS  Google Scholar 

  136. Lee, B.; Liu, W. J.; Naylor, C. H.; Park, J.; Malek, S. C.; Berger, J. S.; Johnson, A. T. C.; Agarwal, R. Electrical tuning of excitonplasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice. Nano Lett. 2017, 17, 4541–4547.

    CAS  Google Scholar 

  137. Waldherr, M.; Lundt, N.; Klaas, M.; Betzold, S.; Wurdack, M.; Baumann, V.; Estrecho, E.; Nalitov, A.; Cherotchenko, E.; Cai, H. et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity. Nat. Commun. 2018, 9, 3286.

    Google Scholar 

  138. Wang, Z. F.; Rhodes, D. A.; Watanabe, K.; Taniguchi, T.; Hone, J. C.; Shan, J.; Mak, K. F. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 2019, 574, 76–80.

    CAS  Google Scholar 

  139. Sun, Z.; Gu, J.; Ghazaryan, A.; Shotan, Z.; Considine, C. R.; Dollar, M.; Chakraborty, B.; Liu, X. Z.; Ghaemi, P.; Kéna-Cohen, S. et al. Optical control of room-temperature valley polaritons. Nat. Photon. 2017, 11, 491–495.

    CAS  Google Scholar 

  140. Chakraborty, B.; Gu, J.; Sun, Z.; Khatoniar, M.; Bushati, R.; Boehmke, A. L.; Koots, R.; Menon, V. M. Control of strong lightmatter interaction in monolayer WS2 through electric field gating. Nano Lett. 2018, 18, 6455–6460.

    CAS  Google Scholar 

  141. Dhara, S.; Chakraborty, C.; Goodfellow, K. M.; Qiu, L.; O’Loughlin, T. A.; Wicks, G. W.; Bhattacharjee, S.; Vamivakas, A. N. Anomalous dispersion of microcavity trion-polaritons. Nat. Phys. 2018, 14, 130–133.

    CAS  Google Scholar 

  142. Qiu, L.; Chakraborty, C.; Dhara, S.; Vamivakas, A. N. Room-temperature valley coherence in a polaritonic system. Nat. Commun. 2019, 10, 1513.

    CAS  Google Scholar 

  143. Flatten, L. C.; Coles, D. M.; He, Z. Y.; Lidzey, D. G.; Taylor, R. A.; Warner, J. H.; Smith, J. M. Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2. Nat. Commun. 2017, 8, 14097.

    CAS  Google Scholar 

  144. Liang, Z. Q.; Sun, J.; Jiang, Y. Y.; Jiang, L.; Chen, X. D. Plasmonic enhanced optoelectronic devices. Plasmonics 2014, 9, 859–866.

    Google Scholar 

  145. Chernikov, A.; van der Zande, A. M.; Hill, H. M.; Rigosi, A. F.; Velauthapillai, A.; Hone, J.; Heinz, T. F. Electrical tuning of exciton binding energies in monolayer WS2. Phys. Rev. Lett. 2015, 115, 126802.

    Google Scholar 

  146. Gao, S. Y.; Liang, Y. F.; Spataru, C. D.; Yang, L. Dynamical excitonic effects in doped two-dimensional semiconductors. Nano Lett. 2016, 16, 5568–5573.

    CAS  Google Scholar 

  147. Sidler, M.; Back, P.; Cotlet, O.; Srivastava, A.; Fink, T.; Kroner, M.; Demler, E.; Imamoglu, A. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 2017, 13, 255–261.

    CAS  Google Scholar 

  148. Zhang, Q.; Su, R.; Du, W. N.; Liu, X. F.; Zhao, L. Y.; Ha, S. T.; Xiong, Q. H. Advances in small perovskite-based lasers. Small Methods 2017, 1, 1700163.

    Google Scholar 

  149. Salehzadeh, O.; Djavid, M.; Tran, N. H.; Shih, I.; Mi, Z. T. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett. 2015, 15, 5302–5306.

    CAS  Google Scholar 

  150. Lohof, F.; Steinhoff, A.; Florian, M.; Lorke, M.; Erben, D.; Jahnke, F.; Gies, C. Prospects and limitations of transition metal dichalcogenide laser gain materials. Nano Lett. 2019, 19, 210–217.

    CAS  Google Scholar 

  151. Chernikov, A.; Ruppert, C.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photon. 2015, 9, 466–470.

    CAS  Google Scholar 

  152. Steinhoff, A.; Florian, M.; Rösner, M.; Schönhoff, G.; Wehling, T. O.; Jahnke, F. Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun. 2017, 8, 1166.

    CAS  Google Scholar 

  153. Wang, Z.; Sun, H.; Zhang, Q. Y.; Feng, J. B.; Zhang, J. X.; Li, Y. Z.; Ning, C. Z. Excitonic complexes and optical gain in two-dimensional molybdenum ditelluride well below the Mott transition. Light-Sci. Appl. 2020, 9, 39.

    CAS  Google Scholar 

  154. Wu, S. F.; Buckley, S.; Schaibley, J. R.; Feng, L. F.; Yan, J. Q.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vučković, J.; Majumdar, A. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69–72.

    CAS  Google Scholar 

  155. Ye, Y.; Wong, Z. J.; Lu, X. F.; Ni, X. J.; Zhu, H. Y.; Chen, X. H.; Wang, Y.; Zhang, X. Monolayer excitonic laser. Nat. Photon. 2015, 9, 733–737.

    CAS  Google Scholar 

  156. Li, Y. Z.; Zhang, J. X.; Huang, D. D.; Sun, H.; Fan, F.; Feng, J. B.; Wang, Z.; Ning, C. Z. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol. 2017, 12, 987–992.

    CAS  Google Scholar 

  157. Shang, J. Z.; Cong, C. X.; Wang, Z. L.; Peimyoo, N.; Wu, L. S.; Zou, C. J.; Chen, Y.; Chin, X. Y.; Wang, J. P.; Soci, C. et al. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers. Nat. Commun. 2017, 8, 543.

    Google Scholar 

  158. Fang, H. L.; Liu, J.; Li, H. J.; Zhou, L. D.; Liu, L.; Li, J. T.; Wang, X. H.; Krauss, T. F.; Wang, Y. 1305 nm few-layer MoTe2-on-silicon laser-like emission. Laser Photonics Rev. 2018, 12, 1800015.

    Google Scholar 

  159. Zhao, L. Y.; Shang, Q. Y.; Gao, Y.; Shi, J.; Liu, Z.; Chen, J.; Mi, Y.; Yang, P. F.; Zhang, Z. P.; Du, W. N. et al. High-temperature continuous-wave pumped lasing from large-area monolayer semiconductors grown by chemical vapor deposition. ACS Nano 2018, 12, 9390–9396.

    CAS  Google Scholar 

  160. Fang, H. L.; Liu, J.; Lin, Q. L.; Su, R. B.; Wei, Y. M.; Krauss, T. F.; Li, J. T.; Wang, Y.; Wang, X. H. Laser-like emission from a sandwiched MoTe2 heterostructure on a silicon single-mode resonator. Adv. Opt. Mater. 2019, 7, 1900538.

    CAS  Google Scholar 

  161. Liu, Y. D.; Fang, H. L.; Rasmita, A.; Zhou, Y.; Li, J. T.; Yu, T.; Xiong, Q. H.; Zheludev, N.; Liu, J.; Gao, W. B. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv. 2019, 5, eaav4506.

    CAS  Google Scholar 

  162. Paik, E. Y.; Zhang, L.; Burg, G. W.; Gogna, R.; Tutuc, E.; Deng, H. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 2019, 576, 80–84.

    CAS  Google Scholar 

  163. Huang, Y. Q.; Ning, J. Q.; Chen, H. M.; Xu, Y. J.; Wang, X.; Ge, X. T.; Jiang, C.; Zhang, X.; Zhang, J. W.; Peng, Y. et al. Mid-infrared black phosphorus surface-emitting laser with an open microcavity. ACS Photonics 2019, 6, 1581–1586.

    CAS  Google Scholar 

  164. Zhang, Y. S.; Wang, S. W.; Chen, S. L.; Zhang, Q. L.; Wang, X.; Zhu, X. L.; Zhang, X. H.; Xu, X.; Yang, T. F.; He, M. et al. Wavelength-tunable mid-infrared lasing from black phosphorus nanosheets. Adv. Mater. 2020, 32, 1808319.

    CAS  Google Scholar 

  165. Lundt, N.; Maryński, A.; Cherotchenko, E.; Pant, A.; Fan, X.; Tongay, S.; Sęk, G.; Kavokin, A. V.; Höfling, S.; Schneider, C. Monolayered MoSe2: A candidate for room temperature polaritonics. 2D Mater. 2016, 4, 015006.

    Google Scholar 

  166. Tan, L. B.; Cotlet, O.; Bergschneider, A.; Schmidt, R.; Back, P.; Shimazaki, Y.; Kroner, M.; İmamoğlu, A. Interacting polaron-polaritons. Phys. Rev. X 2020, 10, 021011.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding support from the Natural Science Foundation of China (Nos. 51991340 and 51991344), the National Key Research and Development Program of China (Nos. 2017YFA0205700 and 2017YFA0304600), and the Open Research Fund Program of the State Key Laboratory of Low-dimensional Quantum Physics (No. KF201907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Shang, Q., Li, M. et al. Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Res. 14, 1937–1954 (2021). https://doi.org/10.1007/s12274-020-3073-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3073-5

Keywords

Navigation