Skip to main content
Log in

Plasmon-generated hot holes for chemical reactions

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Plasmonic nanostructures have been widely used for photochemical conversions due to their unique and easy-tuning optical properties in visible and near-infrared range. Compared with the plasmon-generated hot electrons, the hot holes usually have a shorter lifetime, which makes them more difficult to drive redox reactions. This review focuses on the photochemistry driven by the plasmon-generated hot holes. First, we discuss the generation and energy distribution of the plasmon-generated hot carriers, especially hot holes. Then, the dynamics of the hot holes are discussed at the interface between plasmonic metal and semiconductor or adsorbed molecules. Afterwards, the utilization of these hot holes in redox reactions is reviewed on the plasmon-semiconductor heterostructures as well as on the surface of the molecule-adsorbed plasmonic metals. Finally, the remaining challenges and future perspectives in this field are presented. This review will be helpful for further improving the efficiency of the photochemical reactions involving the plasmon-generated hot holes and expanding the applications of these hot holes in varieties of chemical reactions, especially the ones with high conversion rate and selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

    CAS  Google Scholar 

  2. Herrmann, J. M. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 1999, 53, 115–129.

    CAS  Google Scholar 

  3. Chen, H. M.; Chen, C. K.; Liu, R. S.; Wu, C. C.; Chang, W. S.; Chen, K. H.; Chan, T. S.; Lee, J. F.; Tsai, D. P. A new approach to solar hydrogen production: A ZnO-ZnS solid solution nanowire array photoanode. Adv. Energy Mater. 2011, 1, 742–747.

    CAS  Google Scholar 

  4. Chen, H. M.; Chen, C. K.; Lin, C. C.; Liu, R. S.; Yang, H.; Chang, W. S.; Chen, K. H.; Chan, T. S.; Lee, J. F.; Tsai, D. P. Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: An X-ray absorption spectroscopy approach for the electronic evolution under solar illumination. J. Phys. Chem. C 2011, 115, 21971–21980.

    CAS  Google Scholar 

  5. Su, Y. H.; Straathof, N. J. W.; Hessel, V.; Noël, T. Photochemical transformations accelerated in continuous-flow reactors: Basic concepts and applications. Chem.-Eur. J. 2014, 20, 10562–10589.

    CAS  Google Scholar 

  6. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    CAS  Google Scholar 

  7. Zhai, X. T.; Li, Z. Y.; Lu, Z. C.; Wang, G. L.; Li, P.; Gao, Y. Q.; Huang, X.; Huang, W.; Uji-i, H.; Lu, G. Synthesis of 42-faceted bismuth vanadate microcrystals for enhanced photocatalytic activity. J. Colloid Interface Sci. 2019, 542, 207–212.

    CAS  Google Scholar 

  8. Yi, R. H.; Wang, Y. L.; Zhou, X.; Li, Z. Y.; Zhang, C. Y.; He, C. Y.; Li, H.; Gao, Y. Q.; Huang, X.; Lu, G. Crack formation on crystalline bismuth oxychloride thin square sheets by using a wet-chemical method. ChemNanoMat 2020, 6, 759–764.

    CAS  Google Scholar 

  9. Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.

    CAS  Google Scholar 

  10. Reinhard, B. M.; Sheikholeslami, S.; Mastroianni, A.; Alivisatos, A. P.; Liphardt, J. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes. Proc. Natl. Acad. Sci. USA 2007, 104, 2667–2672.

    CAS  Google Scholar 

  11. Sönnichsen, C.; Reinhard, B. M.; Liphardt, J.; Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23, 741–745.

    Google Scholar 

  12. Haes, A. J.; Van Duyne, R. P. A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 2002, 124, 10596–10604.

    CAS  Google Scholar 

  13. Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081.

    CAS  Google Scholar 

  14. Seh, Z. W.; Liu, S. H.; Low, M.; Zhang, S. Y.; Liu, Z. L.; Mlayah, A.; Han, M. Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 2012, 24, 2310–2314.

    CAS  Google Scholar 

  15. Thomann, I.; Pinaud, B. A.; Chen, Z. B.; Clemens, B. M.; Jaramillo, T. F.; Brongersma, M. L. Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 2011, 11, 3440–3446.

    CAS  Google Scholar 

  16. Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.; Watanabe, T. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 2008, 130, 1676–1680.

    CAS  Google Scholar 

  17. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

    CAS  Google Scholar 

  18. Ueno, K.; Misawa, H. Surface plasmon-enhanced photochemical reactions. J. Photochem. Photobiol. C Photochem. Rev. 2013, 15, 31–52.

    CAS  Google Scholar 

  19. Maier, S. A.; Atwater, H. A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 2005, 98, 011101.

    Google Scholar 

  20. Cushing, S. K.; Li, J. T.; Meng, F. K.; Senty, T. R.; Suri, S.; Zhi, M. J.; Li, M.; Bristow, A. D.; Wu, N. Q. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041.

    CAS  Google Scholar 

  21. Lee, M. G.; Moon, C. W.; Park, H.; Sohn, W.; Kang, S. B.; Lee, S.; Choi, K. J.; Jang, H. W. Dominance of plasmonic resonant energy transfer over direct electron transfer in substantially enhanced water oxidation activity of BiVO4 by shape-controlled Au nanoparticles. Small 2017, 13, 1701644.

    Google Scholar 

  22. Fedoruk, M.; Meixner, M.; Carretero-Palacios, S.; Lohmüller, T.; Feldmann, J. Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles. ACS Nano 2013, 7, 7648–7653.

    CAS  Google Scholar 

  23. Chaunchaiyakul, S.; Setiadi, A.; Krukowski, P.; Catalan, F. C. I.; Akai-Kasaya, M.; Saito, A.; Hayazawa, N.; Kim, Y.; Osuga, H.; Kuwahara, Y. Nanoscale dehydrogenation observed by tip-enhanced Raman spectroscopy. J. Phys. Chem. C 2017, 121, 18162–18168.

    CAS  Google Scholar 

  24. Denzler, D. N.; Frischkorn, C.; Hess, C.; Wolf, M.; Ertl, G. Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett. 2003, 91, 226102.

    CAS  Google Scholar 

  25. Sundararaman, R.; Narang, P.; Jermyn, A. S.; Goddard III, W. A.; Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 2014, 5, 5788.

    CAS  Google Scholar 

  26. Baffou, G.; Bordacchini, I.; Baldi, A.; Quidant, R. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light Sci. Appl. 2020, 9, 108.

    Google Scholar 

  27. Dong, Y. Y.; Su, Y. L.; Du, L. L.; Wang, R. F.; Zhang, L.; Zhao, D. B.; Xie, W. Plasmon-enhanced deuteration under visible-light irradiation. ACS Nano 2019, 13, 10754–10760.

    CAS  Google Scholar 

  28. Zhan, C.; Wang, Z. Y.; Zhang, X. G.; Chen, X. J.; Huang, Y. F.; Hu, S.; Li, J. F.; Wu, D. Y.; Moskovits, M.; Tian, Z. Q. Interfacial construction of plasmonic nanostructures for the utilization of the plasmon-excited electrons and holes. J. Am. Chem. Soc. 2019, 141, 8053–8057.

    CAS  Google Scholar 

  29. Li, W.; Miao, J. J.; Peng, T. H.; Lv, H.; Wang, J. G.; Li, K.; Zhu, Y.; Li, D. Single-molecular catalysis identifying activation energy of the intermediate product and rate-limiting step in plasmonic photocatalysis. Nano Lett. 2020, 20, 2507–2513.

    CAS  Google Scholar 

  30. Zhai, Y. M.; DuChene, J. S.; Wang, Y. C.; Qiu, J. J.; Johnston-Peck, A. C.; You, B.; Guo, W. X.; DiCiaccio, B.; Qian, K.; Zhao, E. W. et al. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nat. Mater. 2016, 15, 889–895.

    CAS  Google Scholar 

  31. White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.

    CAS  Google Scholar 

  32. Hou, W. B.; Hung, W. H.; Pavaskar, P.; Goeppert, A.; Aykol, M.; Cronin, S. B. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal. 2011, 1, 929–936.

    CAS  Google Scholar 

  33. Tu, W. G.; Zhou, Y.; Li, H. J.; Li, P.; Zou, Z. G. Au@TiO2 yolk-shell hollow spheres for plasmon-induced photocatalytic reduction of CO2 to solar fuel via a local electromagnetic field. Nanoscale 2015, 7, 14232–14236.

    CAS  Google Scholar 

  34. Robatjazi, H.; Zhao, H. Q.; Swearer, D. F.; Hogan, N. J.; Zhou, L. N.; Alabastri, A.; McClain, M. J.; Nordlander, P.; Halas, N. J. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 2017, 8, 27.

    Google Scholar 

  35. Wu, B. H.; Liu, D. Y.; Mubeen, S.; Chuong, T. T.; Moskovits, M.; Stucky, G. D. Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J. Am. Chem. Soc. 2016, 138, 1114–1117.

    CAS  Google Scholar 

  36. Warren, S. C.; Thimsen, E. Plasmonic solar water splitting. Energy Environ. Sci. 2012, 5, 5133–5146.

    CAS  Google Scholar 

  37. Zhang, P.; Wang, T.; Gong, J. L. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 2015, 27, 5328–5342.

    CAS  Google Scholar 

  38. Ueno, K.; Oshikiri, T.; Misawa, H. Plasmon-induced water splitting using metallic-nanoparticle-loaded photocatalysts and photoelectrodes. ChemPhysChem 2016, 17, 199–215.

    CAS  Google Scholar 

  39. Nishijima, Y.; Ueno, K.; Kotake, Y.; Murakoshi, K.; Inoue, H.; Misawa, H. Near-infrared plasmon-assisted water oxidation. J. Phys. Chem. Lett. 2012, 3, 1248–1252.

    CAS  Google Scholar 

  40. Huang, Y. B.; Liu, J.; Cao, D. W.; Liu, Z. M.; Ren, K. K.; Liu, K.; Tang, A. W.; Wang, Z. J.; Li, L.; Qu, S. C. et al. Separation of hot electrons and holes in Au/LaFeO3 to boost the photocatalytic activities both for water reduction and oxidation. Int. J. Hydrogen Energy 2019, 44, 13242–13252.

    CAS  Google Scholar 

  41. Saito, K.; Tanabe, I.; Tatsuma, T. Site-selective plasmonic etching of silver nanocubes. J. Phys. Chem. Lett. 2016, 7, 4363–4368.

    CAS  Google Scholar 

  42. Khanadeev, V. A.; Khlebtsov, N. G.; Burov, A. M.; Khlebtsov, B. N. Tuning of plasmon resonance of gold nanorods by controlled etching. Colloid J. 2015, 77, 652–660.

    CAS  Google Scholar 

  43. Brown, A. M.; Sundararaman, R.; Narang, P.; Goddard III, W. A.; Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry. ACS Nano 2016, 10, 957–966.

    CAS  Google Scholar 

  44. Govorov, A. O.; Zhang, H.; Gun’ko, Y. K. Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C 2013, 117, 16616–16631.

    CAS  Google Scholar 

  45. Hou, W.; Cronin, S. B. A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619.

    CAS  Google Scholar 

  46. Kazuma, E.; Kim, Y. Mechanistic studies of plasmon chemistry on metal catalysts. Angew. Chem., Int. Ed. 2019, 58, 4800–4808.

    CAS  Google Scholar 

  47. Zhang, N.; Han, C.; Fu, X. Z.; Xu, Y. J. Function-oriented engineering of metal-based nanohybrids for photoredox catalysis: Exerting plasmonic effect and beyond. Chem 2018, 4, 1832–1861.

    CAS  Google Scholar 

  48. Shin, H. H.; Koo, J. J.; Lee, K. S.; Kim, Z. H. Chemical reactions driven by plasmon-induced hot carriers. Appl. Mater. Today 2019, 16, 112–119.

    Google Scholar 

  49. Ma, X. C.; Dai, Y.; Yu, L.; Huang, B. B. Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl. 2016, 5, e16017.

    CAS  Google Scholar 

  50. Zhang, Y. C.; He, S.; Guo, W. X.; Hu, Y.; Huang, J. W.; Mulcahy, J. R.; Wei, W. D. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2018, 118, 2927–2954.

    CAS  Google Scholar 

  51. Tatsuma, T.; Nishi, H. Plasmonic hole ejection involved in plasmon-induced charge separation. Nanoscale Horiz. 2020, 5, 597–606.

    CAS  Google Scholar 

  52. Li, X. G.; Xiao, D.; Zhang, Z. Y. Landau damping of quantum plasmons in metal nanostructures. New J. Phys. 2013, 15, 023011.

    CAS  Google Scholar 

  53. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

    CAS  Google Scholar 

  54. Link, S.; El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217.

    CAS  Google Scholar 

  55. Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 2002, 116, 6755.

    CAS  Google Scholar 

  56. Ekinci, Y.; Solak, H. H.; Löffler, J. F. Plasmon resonances of aluminum nanoparticles and nanorods. J. Appl. Phys. 2008, 104, 083107.

    Google Scholar 

  57. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

    CAS  Google Scholar 

  58. Lu, G.; Wang, G. L.; Li, H. Effect of nanostructured silicon on surface enhanced Raman scattering. RSC Adv. 2018, 5, 6629–6633.

    Google Scholar 

  59. Manjavacas, A.; Liu, J. G.; Kulkarni, V.; Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 2014, 5, 7630–7638.

    Google Scholar 

  60. Dhas, N. A.; Raj, C. P.; Gedanken, A. Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater. 1998, 10, 1446–1452.

    CAS  Google Scholar 

  61. Bernardi, M.; Mustafa, J.; Neaton, J. B.; Louie, S. G. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. 2015, 6, 7044.

    CAS  Google Scholar 

  62. Sundararaman, R.; Narang, P.; Jermyn, A. S.; Goddard III, W. A.; Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 2014, 5, 5788.

    CAS  Google Scholar 

  63. Zhang, Z. L.; Zhang, C. Y.; Zheng, H. R.; Xu, H. X. Plasmon-driven catalysis on molecules and nanomaterials. Acc. Chem. Res. 2019, 52, 2506–2515.

    CAS  Google Scholar 

  64. Kale, M. J.; Avanesian, T.; Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116–128.

    CAS  Google Scholar 

  65. Boerigter, C.; Campana, R.; Morabito, M.; Linic, S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 2016, 7, 10545.

    CAS  Google Scholar 

  66. DuChene, J. S.; Sweeny, B. C.; Johnston-Peck, A. C.; Su, D.; Stach, E. A.; Wei, W. D. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem., Int. Ed. 2014, 53, 7887–7891.

    CAS  Google Scholar 

  67. Hung, S. F.; Xiao, F. X.; Hsu, Y. Y.; Suen, N. T.; Yang, H. B.; Chen, H. M.; Liu, B. Iridium oxide-assisted plasmon-induced hot carriers: Improvement on kinetics and thermodynamics of hot carriers. Adv. Energy Mater. 2016, 6, 1501339.

    Google Scholar 

  68. Zhang, Z.; Yates, Jr. J. T. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520–5551.

    CAS  Google Scholar 

  69. Sá, J.; Tagliabue, G.; Friedli, P.; Szlachetko, J.; Rittmann-Frank, M. H.; Santomauro, F. G.; Milne, C. J.; Sigg, H. Direct observation of charge separation on Au localized surface plasmons. Energy Environ. Sci. 2013, 6, 3584–3588.

    Google Scholar 

  70. Lian, Z. C.; Sakamoto, M.; Matsunaga, H.; Vequizo, J. J. M.; Yamakata, A.; Haruta, M.; Kurata, H.; Ota, W.; Sato, T.; Teranishi, T. Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface. Nat. Commun. 2018, 9, 2314.

    Google Scholar 

  71. Zandi, O.; Agrawal, A.; Shearer, A. B.; Reimnitz, L. C.; Dahlman, C. J.; Staller, C. M.; Milliron, D. J. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals. Nat. Mater. 2018, 17, 710–717.

    CAS  Google Scholar 

  72. Kriegel, I.; Scotognella, F.; Manna, L. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives. Phys. Rep. 2017, 674, 1–52.

    CAS  Google Scholar 

  73. Boerigter, C.; Aslam, U.; Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 2016, 10, 6108–6115.

    CAS  Google Scholar 

  74. Furube, A.; Du, L. C.; Hara, K.; Katoh, R.; Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 14852–14853.

    CAS  Google Scholar 

  75. Ning, Y.; Fielding, L. A.; Nutter, J.; Kulak, A. N.; Meldrum, F. C.; Armes, S. P. Spatially controlled occlusion of polymer-stabilized gold nanoparticles within ZnO. Angew. Chem., Int. Ed. 2019, 58, 4302–4307.

    CAS  Google Scholar 

  76. Wei, R. B.; Kuang, P. Y.; Cheng, H.; Chen, Y. B.; Long, J. Y.; Zhang, M. Y.; Liu, Z. Q. Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustainable Chem. Eng. 2017, 5, 4249–4257.

    CAS  Google Scholar 

  77. Zhang, Z. S.; Liu, L. H.; Fang, W. H.; Long, R.; Tokina, M. V.; Prezhdo, O. V. Plasmon-mediated electron injection from Au nanorods into MoS2: Traditional versus photoexcitation mechanism. Chem 2018, 4, 1112–1127.

    CAS  Google Scholar 

  78. Chai, C.; Liu, J. X.; Wang, Y. W.; Zhang, X. C.; Duan, D. H.; Fan, C. M.; Wang, Y. F. Enhancement in photocatalytic performance of Ag-AgCl decorated with h-WO3 and mechanism insight. Appl. Phys. A 2019, 125, 96.

    Google Scholar 

  79. Wang, L.; Lv, D. D.; Yue, Z. J.; Zhu, H.; Wang, L.; Wang, D. F.; Xu, X.; Hao, W. C.; Dou, S. X.; Du, Y. Promoting photoreduction properties via synergetic utilization between plasmonic effect and highly active facet of BiOCl. Nano Energy 2019, 57, 398–404.

    CAS  Google Scholar 

  80. Lu, Z. C.; Zhai, X. T.; Yi, R. H.; Li, Z. Y.; Zhang, R. X.; Wei, Q.; Xing, G. H.; Lu, G.; Huang, W. Photoluminescence emission during photoreduction of graphene oxide sheets as investigated with single-molecule microscopy. J. Phys. Chem. C 2020, 124, 7914–7921.

    CAS  Google Scholar 

  81. Su, L.; Lu, G.; Kenens, B.; Rocha, S.; Fron, E.; Yuan, H. F.; Chen, C.; Van Dorpe, P.; Roeffaers, M. B. J.; Mizuno, H. et al. Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy. Nat. Commun. 2015, 6, 6287.

    CAS  Google Scholar 

  82. Chen, T.; Dong, B.; Chen, K. C.; Zhao, F.; Cheng, X. D.; Ma, C. B.; Lee, S.; Zhang, P.; Kang, S. H.; Ha, J. W. et al. Optical superresolution imaging of surface reactions. Chem. Rev. 2017, 117, 7510–7537.

    CAS  Google Scholar 

  83. Ha, J. W.; Ruberu, T. P. A.; Han, R.; Dong, B.; Vela, J.; Fang, N. Superresolution mapping of photogenerated electron and hole separation in single metal-semiconductor nanocatalysts. J. Am. Chem. Soc. 2014, 136, 1398–1408.

    CAS  Google Scholar 

  84. Nishi, H.; Sakamoto, M.; Tatsuma, T. Local trapping of energetic holes at gold nanoparticles on TiO2. Chem. Commun. 2018, 54, 11741–11744.

    CAS  Google Scholar 

  85. Wang, S. Y.; Gao, Y. Y.; Miao, S.; Liu, T. F.; Mu, L. C.; Li, R. G.; Fan, F. T.; Li, C. Positioning the water oxidation reaction sites in plasmonic photocatalysts. J. Am. Chem. Soc. 2017, 139, 11771–11778.

    CAS  Google Scholar 

  86. Bai, S.; Li, X. Y.; Kong, Q.; Long, R.; Wang, C. M.; Jiang, J.; Xiong, Y. J. Toward enhanced photocatalytic oxygen evolution: Synergetic utilization of plasmonic effect and schottky junction via interfacing facet selection. Adv. Mater. 2015, 27, 3444–3452.

    CAS  Google Scholar 

  87. Naldoni, A.; Montini, T.; Malara, F.; Mróz, M. M.; Beltram, A.; Virgili, T.; Boldrini, C. L.; Marelli, M.; Romero-Ocaña, I.; Delgado, J. J. et al. Hot electron collection on brookite nanorods lateral facets for plasmon-enhanced water oxidation. ACS Catal. 2017, 7, 1270–1278.

    CAS  Google Scholar 

  88. Liu, L. Q.; Li, P.; Adisak, B.; Ouyang, S. X.; Umezawa, N.; Ye, J. H.; Kodiyath, R.; Tanabe, T.; Ramesh, G. V.; Ueda, S. et al. Gold photosensitized SrTiO3 for visible-light water oxidation induced by Au interband transitions. J. Mater. Chem. A 2014, 2, 9875–9882.

    CAS  Google Scholar 

  89. Wang, M. M.; Wang, P.; Li, C. P.; Li, H. J.; Jin, Y. D. Boosting electrocatalytic oxygen evolution performance of ultrathin Co/Ni-MOF nanosheets via plasmon-induced hot carriers. ACS Appl. Mater. Interfaces 2018, 10, 37095–37102.

    CAS  Google Scholar 

  90. Silva, C. G.; Juarez, R.; Marino, T.; Molinari, R.; Garcia, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 2011, 133, 595–602.

    Google Scholar 

  91. Wang, L.; Hu, H. Y.; Nguyen, N. T.; Zhang, Y. J.; Schmuki, P.; Bi, Y. P. Plasmon-induced hole-depletion layer on hematite nanoflake photoanodes for highly efficient solar water splitting. Nano Energy 2017, 35, 171–178.

    CAS  Google Scholar 

  92. Kim, J.; Son, H. Y.; Nam, Y. S. Multilayered plasmonic heterostructure of gold and titania nanoparticles for solar fuel production. Sci. Rep. 2018, 8, 10464.

    Google Scholar 

  93. Zhang, Y. C.; Zhang, Y. L.; Guo, W. X.; Johnston-Peck, A. C.; Hu, Y.; Song, X. N.; Wei, W. D. Modulating multi-hole reaction pathways for photoelectrochemical water oxidation on gold nanocatalysts. Energy Environ. Sci. 2020, 13, 1501–1508.

    CAS  Google Scholar 

  94. DePuccio, D. P.; Landry, C. C. Photocatalytic oxidation of methanol using porous Au/WO3 and visible light. Catal. Sci. Technol. 2016, 6, 7512–7520.

    CAS  Google Scholar 

  95. Xiong, Y. J.; Zou, L. L.; Pan, Q. G.; Zhou, Y.; Zou, Z. Q.; Yang, H. Photo-electro synergistic catalysis: Can Pd be active for methanol electrooxidation in acidic medium? Electrochim. Acta 2018, 278, 210–218.

    CAS  Google Scholar 

  96. Yang, H.; He, L. Q.; Wang, Z. H.; Lu, X. H.; Li, G. R.; Fang, P. P.; Tong, Y. X. Enhanced photocatalytic activity from mixture-fuel cells by ZnO template-assisted Pd-Pt hollow nanorods. ChemistrySelect 2017, 2, 9842–9846.

    CAS  Google Scholar 

  97. Zhang, P.; Wu, P. Y.; Bao, S. Y.; Wang, Z.; Tian, B. Z.; Zhang, J. L. Synthesis of sandwich-structured AgBr@Ag@TiO2 composite photocatalyst and study of its photocatalytic performance for the oxidation of benzyl alcohols to benzaldehydes. Chem. Eng. J. 2016, 306, 1151–1161.

    CAS  Google Scholar 

  98. Li, H.; Qin, F.; Yang, Z. P.; Cui, X. M.; Wang, J. F.; Zhang, L. Z. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 2017, 139, 3513–3521.

    CAS  Google Scholar 

  99. Boltersdorf, J.; Forcherio, G. T.; McClure, J. P.; Baker, D. R.; Leff, A. C.; Lundgren, C. Visible light-promoted plasmon resonance to induce “Hot” hole transfer and photothermal conversion for catalytic oxidation. J. Phys. Chem. C 2018, 122, 28934–28948.

    CAS  Google Scholar 

  100. Pan, H. Q.; Steiniger, A.; Heagy, M. D.; Chowdhury, S. Efficient production of formic acid by simultaneous photoreduction of bicarbonate and oxidation of glycerol on gold-TiO2 composite under solar light. J. CO2 Util. 2017, 22, 117–123.

    CAS  Google Scholar 

  101. Sun, Y. R.; Du, C. Y.; Han, G. K.; Wang, Y. J.; Gao, Y. Z.; Yin, G. P.Pt/g-C3N4 nanosheet for visible light-induced enhancement of activity for formic acid electro-oxidation. J. Electrochem. 2018, 24, 262–269.

    CAS  Google Scholar 

  102. Tanaka, A.; Hashimoto, K.; Ohtani, B.; Kominami, H. Non-linear photocatalytic reaction induced by visible-light surface-plasmon resonance absorption of gold nanoparticles loaded on titania particles. Chem. Commun. 2013, 49, 3419–3421.

    CAS  Google Scholar 

  103. Tanaka, A.; Ogino, A.; Iwaki, M.; Hashimoto, K.; Ohnuma, A.; Amano, F.; Ohtani, B.; Kominami, H. Gold-titanium(IV) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method: Correlation between physical properties and photocatalytic activities. Langmuir 2012, 28, 13105–13111.

    CAS  Google Scholar 

  104. Yin, Y. Y.; Yang, Y.; Zhang, L. Z.; Li, Y. S.; Li, Z. Y.; Lei, W. W.; Ma, Y. F.; Huang, Z. R. Facile synthesis of Au/Pd nano-dogbones and their plasmon-enhanced visible-to-NIR light photocatalytic performance. RSC Adv. 2017, 7, 36923–36928.

    CAS  Google Scholar 

  105. Yu, H. J.; Miller, C. J.; Ikeda-Ohno, A.; Waite, T. D. Photodegradation of contaminants using Ag@AgCl/rGo assemblages: Possibilities and limitations. Catal. Today 2014, 224, 122–131.

    CAS  Google Scholar 

  106. Xiao, Q.; Connell, T. U.; Cadusch, J. J.; Roberts, A.; Chesman, A. S. R.; Gómez, D. E. Hot-carrier organic synthesis via the near-perfect absorption of light. ACS Catal. 2018, 8, 10331–10339.

    CAS  Google Scholar 

  107. Chen, H. T. Interference theory of metamaterial perfect absorbers. Opt. Express 2012, 20, 7165–7172.

    Google Scholar 

  108. Ng, C.; Cadusch, J. J.; Dligatch, S.; Roberts, A.; Davis, T. J.; Mulvaney, P.; Gómez, D. E. Hot carrier extraction with plasmonic broadband absorbers. ACS Nano 2016, 10, 4704–4711.

    CAS  Google Scholar 

  109. Zhang, L. C.; Jia, C. C.; He, S. R.; Zhu, Y. T.; Wang, Y. N.; Zhao, Z. H.; Gao, X. C.; Zhang, X. M.; Sang, Y. H.; Zhang, D. J. et al. Hot hole enhanced synergistic catalytic oxidation on Pt-Cu alloy clusters. Adv. Sci. 2017, 4, 1600448.

    Google Scholar 

  110. DuChene, J. S.; Tagliabue, G.; Welch, A. J.; Cheng, W. H.; Atwater, H. A. Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/P-GaN photocathodes. Nano Lett. 2018, 18, 2545–2550.

    CAS  Google Scholar 

  111. Wang, G. L.; Yi, R. H.; Zhai, X. T.; Bian, R. J.; Gao, Y. Q.; Cai, D. Y.; Liu, J. Q.; Huang, X.; Lu, G. et al. A flexible SERS-active film for studying the effect of non-metallic nanostructures on Raman enhancement. Nanoscale 2018, 10, 16895–16901.

    CAS  Google Scholar 

  112. Lu, G.; Li, H.; Wu, S. X.; Chen, P.; Zhang, H. High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering. Nanoscale 2012, 4, 860–863.

    CAS  Google Scholar 

  113. Li, Z. Y.; Huang, X.; Lu, G. Recent developments of flexible and transparent sers substrates. J. Mater. Chem. C 2020, 8, 3956–3969.

    CAS  Google Scholar 

  114. Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I. Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-teller contribution. J. Phys. Chem. 1994, 98, 12702–12707.

    CAS  Google Scholar 

  115. Wu, D. Y.; Liu, X. M.; Huang, Y. F.; Ren, B.; Xu, X.; Tian, Z. Q. Surface catalytic coupling reaction of p-mercaptoaniline linking to silver nanostructures responsible for abnormal sers enhancement: A DFT study. J. Phys. Chem. C 2009, 113, 18212–18222.

    CAS  Google Scholar 

  116. Fang, Y. R.; Li, Y. Z.; Xu, H. X.; Sun, M. T. Ascertaining p,p′-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Langmuir 2010, 26, 7737–7746.

    CAS  Google Scholar 

  117. Huang, Y. F.; Zhu, H. P.; Liu, G. K.; Wu, D. Y.; Ren, B.; Tian, Z. Q. When the signal is not from the original molecule to be detected: Chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 2010, 132, 9244–9246.

    CAS  Google Scholar 

  118. Sun, M. T.; Hou, Y. X.; Li, Z. P.; Liu, L. W.; Xu, H. X. Remote excitation polarization-dependent surface photochemical reaction by plasmonic waveguide. Plasmonics 2011, 6, 681–687.

    CAS  Google Scholar 

  119. Canpean, V.; Iosin, M.; Astilean, S. Disentangling sers signals from two molecular species: A new evidence for the production of p,p′-dimercaptoazobenzene by catalytic coupling reaction of p-aminothiophenol on metallic nanostructures. Chem. Phys. Lett. 2010, 500, 277–282.

    CAS  Google Scholar 

  120. Huang, Y. Z.; Fang, Y. R.; Yang, Z. L.; Sun, M. T. Can p, p′-dimercaptoazobisbenzene be produced from p-aminothiophenol by surface photochemistry reaction in the junctions of a Ag nanoparticle-molecule-Ag (or Au) film? J. Phys. Chem. C 2010, 114, 18263–18269.

    CAS  Google Scholar 

  121. Dong, B.; Fang, Y. R.; Chen, X. W.; Xu, H. X.; Sun, M. T. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p,p′-dimercaptoazobenzene on Au, Ag, and Cu films. Langmuir 2011, 27, 10677–10682.

    CAS  Google Scholar 

  122. Zhao, L. B.; Huang, Y. F.; Liu, X. M.; Anema, J. R.; Wu, D. Y.; Ren, B.; Tian, Z. Q. A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver: Selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline. Phys. Chem. Chem. Phys. 2012, 14, 12919–12929.

    CAS  Google Scholar 

  123. Zhao, L. B.; Huang, Y. F.; Wu, D. Y.; Ren, B. Surface-enhanced Raman spectroscopy and plasmon-assisted photocatalysis of p-aminothiophenol. Acta Chim. Sin. 2014, 72, 1125–1138. (in Chinese)

    CAS  Google Scholar 

  124. Zhao, L. B.; Zhang, M.; Huang, Y. F.; Williams, C. T.; Wu, D. Y.; Ren, B.; Tian, Z. Q. Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds. J. Phys. Chem. Lett. 2014, 5, 1259–1266.

    CAS  Google Scholar 

  125. Shi, X.; Li, H. W.; Ying, Y. L.; Liu, C.; Zhang, L.; Long, Y. T. In situ monitoring of catalytic process variations in a single nanowire by dark-field-assisted surface-enhanced Raman spectroscopy. Chem. Commun. 2016, 52, 1044–1047.

    CAS  Google Scholar 

  126. Peng, T. H.; Miao, J. J.; Gao, Z. S.; Zhang, L. J.; Gao, Y.; Fan, C. H.; Li, D. Reactivating catalytic surface: Insights into the role of hot holes in plasmonic catalysis. Small 2018, 14, 1703510.

    Google Scholar 

  127. Brus, L. Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 2008, 41, 1742–1749.

    CAS  Google Scholar 

  128. Thrall, E. S.; Steinberg, A. P.; Wu, X. M.; Brus, L. E. The role of photon energy and semiconductor substrate in the plasmon-mediated photooxidation of citrate by silver nanoparticles. J. Phys. Chem. C 2013, 117, 26238–26247.

    CAS  Google Scholar 

  129. Schlather, A. E.; Manjavacas, A.; Lauchner, A.; Marangoni, V. S.; DeSantis, C. J.; Nordlander, P.; Halas, N. J. Hot hole photo-electrochemistry on Au@SiO2@Au nanoparticles. J. Phys. Chem. Lett. 2017, 5, 2060–2067.

    Google Scholar 

  130. Dinesh, V. P.; Biji, P.; Ashok, A.; Dhara, S. K.; Kamruddin, M.; Tyagi, A. K.; Raj, B. Plasmon-mediated, highly enhanced photocatalytic degradation of industrial textile dyes using hybrid ZnO@Ag core-shell nanorods. RSC Adv. 2014, 4, 58930–58940.

    CAS  Google Scholar 

  131. Mondal, S.; De Anda Reyes, M. E.; Pal, U. Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light. RSC Adv. 2017, 7, 8633–8645.

    CAS  Google Scholar 

  132. He, L. L.; Liu, C. Q.; Tang, J.; Zhou, Y. C.; Yang, H.; Liu, R. Y.; Hu, J. G. Self-catalytic stabilized Ag-Cu nanoparticles with tailored SERS response for plasmonic photocatalysis. Appl. Surf. Sci. 2018, 434, 265–272.

    CAS  Google Scholar 

  133. Lu, G.; Yuan, H. F.; Su, L.; Kenens, B.; Fujita, Y.; Chamtouri, M.; Pszona, M.; Fron, E.; Waluk, J.; Hofkens, J. et al. Plasmon-mediated surface engineering of silver nanowires for surface-enhanced Raman scattering. J. Phys. Chem. Lett. 2017, 5, 2774–2779.

    Google Scholar 

  134. Al-Zubeidi, A.; Hoener, B. S.; Collins, S. S. E.; Wang, W. X.; Kirchner, S. R.; Jebeli, S. A. H.; Joplin, A.; Chang, W. S.; Link, S.; Landes, C. F. Hot holes assist plasmonic nanoelectrode dissolution. Nano Lett. 2019, 19, 1301–1306.

    CAS  Google Scholar 

  135. Kim, Y.; Smith, J. G.; Jain, P. K. Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles. Nat. Chem. 2018, 10, 763–769.

    CAS  Google Scholar 

  136. Zhao, J.; Nguyen, S. C.; Ye, R.; Ye, B. H.; Weller, H.; Somorjai, G. A.; Alivisatos, A. P.; Toste, F. D. A comparison of photocatalytic activities of gold nanoparticles following plasmonic and interband excitation and a strategy for harnessing interband hot carriers for solution phase photocatalysis. ACS Cent. Sci. 2017, 3, 482–488.

    CAS  Google Scholar 

  137. Xie, W.; Schlücker, S. Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nat. Commun. 2015, 6, 7570.

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 11974180), Key University Science Research Project of Jiangsu Province (No. 17KJA150005), Six Talent Peaks Project in Jiangsu Province (No. XCL-038) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_1060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Jia, F., Li, Z. et al. Plasmon-generated hot holes for chemical reactions. Nano Res. 13, 3183–3197 (2020). https://doi.org/10.1007/s12274-020-3031-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3031-2

Keywords

Navigation