Skip to main content
Log in

Emerging low-dimensional materials for mid-infrared detection

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Mid-infrared (IR) detectors based on the emerging low-dimensional (two-dimensional and quasi one-dimensional) materials offer unique characteristics including large bandgap tunability, optical polarization sensitivity and integrability with typical silicon process, which are not available in the mid-IR detectors based on traditional compound semiconductors. Here, we review the recent progress in study of mid-IR detectors based on the low-dimensional materials, including black phosphorus, black arsenic phosphorus, tellurene and BaTiS3, from the perspectives of crystal structure, material synthesis, optical properties, and the detector characteristics. The detector gain and detectivity are benchmarked, and the unique properties, such as the polarization sensitivity, are discussed. We also provide our perspective about key future research directions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogalski, A. Infrared Detectors; CRC Press: Boca Raton, FL, USA, 2010.

    Google Scholar 

  2. Soref, R. Mid-infrared photonics in silicon and germanium. Nat. Photonics 2010, 4, 495–497.

    CAS  Google Scholar 

  3. Kaufman, Y. J.; Remer, L. A. Detection of forests using mid-IR reflectance: An application for aerosol studies. IEEE Trans. Geosci. Remote Sens. 1994, 32, 672–683.

    Google Scholar 

  4. Waynant, R. W.; Ilev, I. K.; Gannot, I. Mid-infrared laser applications in medicine and biology. Philos. Trans. Roy. Soc. London. Ser. A: Math., Phys. Eng. Sci. 2001, 359, 635–644.

    CAS  Google Scholar 

  5. Todd, M. W.; Provencal, R. A.; Owano, T. G.; Paldus, B. A.; Kachanov, A.; Vodopyanov, K. L.; Hunter, M.; Coy, S. L.; Steinfeld, J. I.; Arnold, J. T. Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 µm) optical parametric oscillator. Appl. Phys. B 2002, 75, 367–376.

    CAS  Google Scholar 

  6. Sonnenfroh, D. M.; Rawlins, W. T.; Allen, M. G.; Gmachl, C.; Capasso, F.; Hutchinson, A. L.; Sivco, D. L.; Baillargeon, J. N.; Cho, A. Y. Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-cw quantum-cascade lasers. Appl. Opt. 2001, 40, 812–820.

    CAS  Google Scholar 

  7. Weng, B. B.; Qiu, J. J.; Zhao, L. H.; Yuan, Z. J.; Chang, C.; Shi, Z. S. Recent development on the uncooled mid-infrared PbSe detectors with high detectivity. In Proceedings of Quantum Sensing and Nanophotonic Devices XI, San Francisco, California, USA, 2014, p 899311.

  8. Kopytko, M.; Kębłowski, A.; Gawron, W.; Martyniuk, P. M.; Madejczyk, P.; Jóźwikowski, K.; Kowalewski, A.; Markowska, O. K.; Rogalski, A. MOCVD grown HgCdTe barrier detectors for MWIR high-operating temperature operation. Opt. Eng. 2015, 54, 105105.

    Google Scholar 

  9. Matveev, B.; Aidaraliev, M.; Gavrilov, G.; Zotova, N.; Karandashov, S.; Sotnikova, G.; Stus’, N.; Talalakin, G.; Il’inskaya, N.; Aleksandrov, S. Room temperature InAs photodiode-InGaAs LED pairs for methane detection in the mid-IR. Sens. Actuators B: Chem. 1998, 51, 233–237.

    CAS  Google Scholar 

  10. Szmulowicz, F.; Haugan, H. J.; Brown, G. J.; Mahalingam, K.; Ullrich, B.; Munshi, S. R.; Grazulis, L. Interfaces as design tools for short-period InAs/GaSb type-II superlattices for mid-infrared detectors. Opto-Electron. Rev. 2006, 14, 69–75.

    Google Scholar 

  11. Stiff-Roberts, A. D. Quantum-dot infrared photodetectors: A review. J. Nanophotonics 2009, 3, 031607.

    Google Scholar 

  12. Zhong, Y. J.; Malagari, S. D.; Hamilton, T.; Wasserman, D. M. Review of mid-infrared plasmonic materials. J. Nanophotonics 2015, 9, 093791.

    CAS  Google Scholar 

  13. Fedeli, J. M.; Nicoletti, S. Mid-infrared (mid-IR) silicon-based photonics. Proc. IEEE 2018, 106, 2302–2312.

    CAS  Google Scholar 

  14. Wu, J. B.; Chen, H. Y.; Yang, N.; Cao, J.; Yan, X. D.; Liu, F. X.; Sun, Q. B.; Ling, X.; Guo, J.; Wang, H. High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 2020, 3, 466–472.

    Google Scholar 

  15. Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.

    CAS  Google Scholar 

  16. Guo, Q. S.; Pospischil, A.; Bhuiyan, M.; Jiang, H.; Tian, H.; Farmer, D.; Deng, B. C.; Li, C.; Han, S. J.; Wang, H. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648–4655.

    CAS  Google Scholar 

  17. Yuan, S. F.; Shen, C. F.; Deng, B. C.; Chen, X. L.; Guo, Q. S.; Ma, Y. Q.; Abbas, A.; Liu, B. L.; Haiges, R.; Ott, C. et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 2018, 18, 3172–3179.

    CAS  Google Scholar 

  18. Shen, C. F.; Liu, Y. H.; Wu, J. B.; Xu, C.; Cui, D. Z.; Li, Z.; Liu, Q. Z.; Li, Y. R.; Wang, Y. X.; Cao, X. et al. Tellurene photodetector with high gain and wide bandwidth. ACS Nano 2020, 14, 303–310.

    CAS  Google Scholar 

  19. Xia, F. N.; Wang, H.; Hwang, J. C. M.; Neto, A. H. C.; Yang, L. Black phosphorus and its isoelectronic materials. Nat. Rev. Phys. 2019, 1, 306–317.

    CAS  Google Scholar 

  20. Yan, H. G.; Low, T.; Zhu, W. J.; Wu, Y. Q.; Freitag, M.; Li, X. S.; Guinea, F.; Avouris, P.; Xia, F. N. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photonics 2013, 7, 394–399.

    CAS  Google Scholar 

  21. Chen, X. L.; Lu, X. B.; Deng, B. C.; Sinai, O.; Shao, Y. C.; Li, C.; Yuan, S. F.; Tran, V.; Watanabe, K.; Taniguchi, T. et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672.

    Google Scholar 

  22. Amani, M.; Regan, E.; Bullock, J.; Ahn, G. H.; Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 2017, 11, 11724–11731.

    CAS  Google Scholar 

  23. Long, M. S.; Wang, Y.; Wang, P.; Zhou, X. H.; Xia, H.; Luo, C.; Huang, S. Y.; Zhang, G. W.; Yan, H. G.; Fan, Z. Y. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511–2519.

    CAS  Google Scholar 

  24. Bullock, J.; Amani, M.; Cho, J.; Chen, Y. Z.; Ahn, G. H.; Adinolfi, V.; Shrestha, V. R.; Gao, Y.; Crozier, K. B.; Chueh, Y. L. et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat. Photonics 2018, 12, 601–607.

    CAS  Google Scholar 

  25. Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.

    Google Scholar 

  26. Spirito, D.; Coquillat, D.; De Bonis, S. L.; Lombardo, A.; Bruna, M.; Ferrari, A. C.; Pellegrini, V.; Tredicucci, A.; Knap, W.; Vitiello, M. S. High performance bilayer-graphene terahertz detectors. Appl. Phys. Lett. 2014, 104, 061111.

    Google Scholar 

  27. Vicarelli, L.; Vitiello, M. S.; Coquillat, D.; Lombardo, A.; Ferrari, A. C.; Knap, W.; Polini, M.; Pellegrini, V.; Tredicucci, A. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 2012, 11, 865–871.

    CAS  Google Scholar 

  28. Yao, Y.; Shankar, R.; Rauter, P.; Song, Y.; Kong, J.; Loncar, M.; Capasso, F. High-responsivity mid-infrared graphene detectors with antenna-enhanced photocarrier generation and collection. Nano Lett. 2014, 14, 3749–3754.

    CAS  Google Scholar 

  29. Wang, X. M.; Cheng, Z. Z.; Xu, K.; Tsang, H. K.; Xu, J. B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888–891.

    CAS  Google Scholar 

  30. Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.

    CAS  Google Scholar 

  31. Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301.

    CAS  Google Scholar 

  32. Li, X. L.; Han, W. P.; Wu, J. B.; Qiao, X. F.; Zhang, J.; Tan, P. H. Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater. 2017, 27, 1604468.

    Google Scholar 

  33. Wu, J. B.; Hu, Z. X.; Zhang, X.; Han, W. P.; Lu, Y.; Shi, W.; Qiao, X. F.; Ijiäs, M.; Milana, S.; Ji, W. et al. Interface coupling in twisted multilayer graphene by resonant Raman spectroscopy of layer breathing modes. ACS Nano 2015, 9, 7440–7449.

    CAS  Google Scholar 

  34. Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873.

    CAS  Google Scholar 

  35. Wu, J. B.; Zhang, X.; Ijäs, M.; Han, W. P.; Qiao, X. F.; Li, X. L.; Jiang, D. S.; Ferrari, A. C.; Tan, P. H. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 2014, 5, 5309.

    CAS  Google Scholar 

  36. Guo, Q. S.; Yu, R. W.; Li, C.; Yuan, S. F.; Deng, B. C.; De Abajo, F. J. G.; Xia, F. N. Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nat. Mater. 2018, 17, 986–992.

    CAS  Google Scholar 

  37. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    CAS  Google Scholar 

  38. Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523–4530.

    CAS  Google Scholar 

  39. Abate, Y.; Akinwande, D.; Gamage, S.; Wang, H.; Snure, M.; Poudel, N.; Cronin, S. B. Recent progress on stability and passivation of black phosphorus. Adv. Mater. 2018, 30, 1704749.

    Google Scholar 

  40. Liu, B. L.; Köpf, M.; Abbas, A. N.; Wang, X. M.; Guo, Q. S.; Jia, Y. C.; Xia, F. N.; Weihrich, R.; Bachhuber, F.; Pielnhofer, F. et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 2015, 27, 4423–4429.

    CAS  Google Scholar 

  41. Osters, O.; Nilges, T.; Bachhuber, F.; Pielnhofer, F.; Weihrich, R.; Schöneich, M.; Schmidt, P. Synthesis and identification of metastable compounds: Black arsenic—Science or fiction? Angew. Chem., Int. Ed. 2012, 51, 2994–2997.

    CAS  Google Scholar 

  42. Pumera, M.; Sofer, Z. 2D monoelemental arsenene, antimonene, and bismuthene: Beyond black phosphorus. Adv. Mater. 2017, 29, 1605299.

    Google Scholar 

  43. Wang, Y. X.; Qiu, G.; Wang, R. X.; Huang, S. Y.; Wang, Q. X.; Liu, Y. Y.; Du, Y. C.; Goddard III, W. A.; Kim, M. J.; Xu, X. F. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236.

    Google Scholar 

  44. Wu, W. Z.; Qiu, G.; Wang, Y. X.; Wang, R. X.; Ye, P. D. Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 2018, 47, 7203–7212.

    CAS  Google Scholar 

  45. Xian, L. D.; Paz, A. P.; Bianco, E.; Ajayan, P. M.; Rubio, A. Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater. 2017, 4, 041003.

    Google Scholar 

  46. Niu, S. Y.; Joe, G.; Zhao, H.; Zhou, Y. C.; Orvis, T.; Huyan, H. X.; Salman, J.; Mahalingam, K.; Urwin, B.; Wu, J. B. et al. Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photonics 2018, 12, 392–396.

    CAS  Google Scholar 

  47. Niu, S. Y.; Zhao, H.; Zhou, Y. C.; Huyan, H. X.; Zhao, B. Y.; Wu, J. B.; Cronin, S. B.; Wang, H.; Ravichandran, J. Mid-wave and long-wave infrared linear dichroism in a hexagonal perovskite chalcogenide. Chem. Mater. 2018, 30, 4897–4901.

    CAS  Google Scholar 

  48. Wu, J. B.; Cong, X.; Niu, S. Y.; Liu, F. X.; Zhao, H.; Du, Z. H.; Ravichandran, J.; Tan, P. H.; Wang, H. Linear dichroism conversion in quasi-1D perovskite chalcogenide. Adv. Mater. 2019, 31, 1902118.

    Google Scholar 

  49. Li, X. S.; Deng, B. C.; Wang, X. M.; Chen, S. Z.; Vaisman, M.; Karato, S. I.; Pan, G.; Lee, M. L.; Cha, J.; Wang, H. et al. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2015, 2, 031002.

    Google Scholar 

  50. Li, C.; Wu, Y.; Deng, B. C.; Xie, Y. J.; Guo, Q. S.; Yuan, S. F.; Chen, X. L.; Bhuiyan, M.; Wu, Z. S.; Watanabe, K. et al. Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater. 2018, 30, 1703748.

    Google Scholar 

  51. Young, E. P.; Park, J.; Bai, T. Y.; Choi, C.; DeBlock, R. H.; Lange, M.; Poust, S.; Tice, J.; Cheung, C.; Dunn, B. S. et al. Wafer-scale black arsenic-phosphorus thin-film synthesis validated with density functional perturbation theory predictions. ACS Appl. Nano Mater. 2018, 1, 4737–4745.

    CAS  Google Scholar 

  52. Chen, Y. B.; Chen, C. Y.; Kealhofer, R.; Liu, H. L.; Yuan, Z. Q.; Jiang, L. L.; Suh, J.; Park, J.; Ko, C.; Choe, H. S. et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 2018, 30, 1800754.

    Google Scholar 

  53. Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

    CAS  Google Scholar 

  54. Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

    CAS  Google Scholar 

  55. Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

    Google Scholar 

  56. Kim, J.; Baik, S. S.; Ryu, S. H.; Sohn, Y.; Park, S.; Park, B. G.; Denlinger, J.; Yi, Y.; Choi, H. J.; Kim, K. S. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 2015, 349, 723–726.

    CAS  Google Scholar 

  57. Luo, Z.; Maassen, J.; Deng, Y. X.; Du, Y. C.; Garrelts, R. P.; Lundstrom, M. S.; Ye, P. D.; Xu, X. F. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572.

    CAS  Google Scholar 

  58. Tian, H.; Guo, Q. S.; Xie, Y. J.; Zhao, H.; Li, C.; Cha, J. J.; Xia, F. N.; Wang, H. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 2016, 28, 4991–4997.

    CAS  Google Scholar 

  59. Ling, X.; Huang, S. X.; Hasdeo, E. H.; Liang, L. B.; Parkin, W. M.; Tatsumi, Y.; Nugraha, A. R. T.; Puretzky, A. A.; Das, P. M.; Sumpter, B. G. et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260–2267.

    CAS  Google Scholar 

  60. Jung, S.; Park, J. H.; Choi, H.; Lee, B. Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching. Appl. Opt. 2003, 42, 2513–2520.

    Google Scholar 

  61. Nomura, T.; Javidi, B.; Murata, S.; Nitanai, E.; Numata, T. Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography. Opt. Lett. 2007, 32, 481–483.

    Google Scholar 

  62. Zhou, Y. W.; Li, Z. F.; Zhou, J.; Li, N.; Zhou, X. H.; Chen, P. P.; Zheng, Y. L.; Chen, X. S.; Lu, W. High extinction ratio super pixel for long wavelength infrared polarization imaging detection based on plasmonic microcavity quantum well infrared photodetectors. Sci. Rep. 2018, 8, 15070.

    Google Scholar 

  63. Li, Q.; Li, Z. F.; Li, N.; Chen, X. S.; Chen, P. P.; Shen, X. C.; Lu, W. High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity. Sci. Rep. 2014, 4, 6332.

    CAS  Google Scholar 

  64. Deng, B. C.; Tran, V.; Xie, Y. J.; Jiang, H.; Li, C.; Guo, Q. S.; Wang, X. M.; Tian, H.; Koester, S. J.; Wang, H. et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun. 2017, 8, 14474.

    CAS  Google Scholar 

  65. van Veen, E.; Nemilentsau, A.; Kumar, A.; Roldán, R.; Katsnelson, M. I.; Low, T.; Yuan, S. J. Tuning two-dimensional hyperbolic plasmons in black phosphorus. Phys. Rev. Appl. 2019, 12, 014011.

    CAS  Google Scholar 

  66. Wang, T.; Liu, Y.; Guo, Q.; Zhang, B.; Sheng, K.; Li, C.; Yin, Y. Tunable bandgap of monolayer black phosphorus by using vertical electric field: A DFT study. J. Korean Phys. Soc. 2015, 66, 1031–1034.

    CAS  Google Scholar 

  67. Chen, X. L.; Zhou, Z. S.; Deng, B. C.; Wu, Z. F.; Xia, F. N.; Cao, Y.; Zhang, L.; Huang, W.; Wang, N.; Wang, L. Electrically tunable physical properties of two-dimensional materials. Nano Today 2019, 27, 99–119.

    CAS  Google Scholar 

  68. Chen, C.; Lu, X. B.; Deng, B. C.; Chen, X. L.; Guo, Q. S.; Li, C.; Ma, C.; Yuan, S. F.; Sung, E.; Watanabe, K. et al. Widely tunable mid-infrared light emission in thin-film black phosphorus. Sci. Adv. 2020, 6, eaay6134.

    CAS  Google Scholar 

  69. Chen, C.; Chen, F.; Chen, X. L.; Deng, B. C.; Eng, B.; Jung, D.; Guo, Q. S.; Yuan, S. F.; Watanabe, K.; Taniguchi, T. et al. Bright mid-infrared photoluminescence from thin-film black phosphorus. Nano Lett. 2019, 19, 1488–1493.

    CAS  Google Scholar 

  70. Eswaraiah, V.; Zeng, Q. S.; Long, Y.; Liu, Z. Black phosphorus nanosheets: Synthesis, characterization and applications. Small 2016, 12, 3480–3502.

    CAS  Google Scholar 

  71. Morita, A. Semiconducting black phosphorus. Appl. Phys. A 1986, 39, 227–242.

    Google Scholar 

  72. Wittig, J.; Matthias, B. T. Superconducting phosphorus. Science 1968, 160, 994–995.

    CAS  Google Scholar 

  73. Maruyama, Y.; Suzuki, S.; Kobayashi, K.; Tanuma, S. Synthesis and some properties of black phosphorus single crystals. Phys. B+C 1981, 105, 99–102.

    CAS  Google Scholar 

  74. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    CAS  Google Scholar 

  75. Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; Da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.

    CAS  Google Scholar 

  76. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    CAS  Google Scholar 

  77. Low, T.; Roldán, R.; Wang, H.; Xia, F. N.; Avouris, P.; Moreno, L. M.; Guinea, F. Plasmons and screening in monolayer and multilayer black phosphorus. Physical Rev. Lett. 2014, 113, 106802.

    Google Scholar 

  78. Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L’Heureux, A. L.; Tang, N. Y. W.; Lévesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 14, 826–832.

    CAS  Google Scholar 

  79. Du, Y. L.; Ouyang, C. Y.; Shi, S. Q.; Lei, M. S. Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 2010, 107, 093718.

    Google Scholar 

  80. Li, L. L.; Bacaksiz, C.; Nakhaee, M.; Pentcheva, R.; Peeters, F. M.; Yagmurcukardes, M. Single-layer Janus black arsenic-phosphorus (b-AsP): Optical dichroism, anisotropic vibrational, thermal, and elastic properties. Phys. Rev. B 2020, 101, 134102.

    CAS  Google Scholar 

  81. Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 1914, 36, 1344–1363.

    CAS  Google Scholar 

  82. Brown, A.; Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 1965, 19, 684–685.

    CAS  Google Scholar 

  83. Baba, M.; Izumida, F.; Takeda, Y.; Morita, A. Preparation of black phosphorus single crystals by a completely closed bismuth-flux method and their crystal morphology. Jpn. J. Appl. Phys. 1989, 28, 1019–1022.

    CAS  Google Scholar 

  84. Shirotani, I.; Maniwa, R.; Sato, H.; Fukizawa, A.; Sato, N.; Maruyama, Y.; Kajiwara, T.; Inokuchi, H.; Akimoto, S. I. Preparation, growth of large single crystals, and physicochemical properties of black phosphorus at high pressures and temperatures. Nippon Kagaku Kaishi 1981, 1604–1609.

  85. Lange, S.; Schmidt, P.; Nilges, T. Au3SnP7@black phosphorus: An easy access to black phosphorus. Inorg. Chem. 2007, 46, 4028–4035.

    CAS  Google Scholar 

  86. Nilges, T.; Kersting, M.; Pfeifer, T. A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 2008, 181, 1707–1711.

    CAS  Google Scholar 

  87. Köpf, M.; Eckstein, N.; Pfister, D.; Grotz, C.; Krüger, I.; Greiwe, M.; Hansen, T.; Kohlmann, H.; Nilges, T. Access and in situ growth of phosphorene-precursor black phosphorus. J. Cryst. Growth 2014, 405, 6–10.

    Google Scholar 

  88. Long, G.; Maryenko, D.; Shen, J. Y.; Xu, S. G.; Hou, J. Q.; Wu, Z. F.; Wong, W. K.; Han, T. Y.; Lin, J. X. Z.; Cai, Y. et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Lett. 2016, 16, 7768–7773.

    CAS  Google Scholar 

  89. Smith, J. B.; Hagaman, D.; Ji, H. F. Growth of 2D black phosphorus film from chemical vapor deposition. Nanotechnology 2016, 27, 215602.

    Google Scholar 

  90. Guo, Z. N.; Zhang, H.; Lu, S. B.; Wang, Z. T.; Tang, S. Y.; Shao, J. D.; Sun, Z. B.; Xie, H. H.; Wang, H. Y.; Yu, X. F. et al. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 2015, 25, 6996–7002.

    CAS  Google Scholar 

  91. Peng, J.; Lai, Y. Q.; Chen, Y. Y.; Xu, J.; Sun, L. P.; Weng, J. Sensitive detection of carcinoembryonic antigen using stability-limited few-layer black phosphorus as an electron donor and a reservoir. Small 2017, 13, 1603589.

    Google Scholar 

  92. Kang, J.; Wells, S. A.; Wood, J. D.; Lee, J. H.; Liu, X. L.; Ryder, C. R.; Zhu, J.; Guest, J. R.; Husko, C. A.; Hersam, M. C. Stable aqueous dispersions of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. USA 2016, 113, 11688–11693.

    CAS  Google Scholar 

  93. Xu, J. Y.; Gao, L. F.; Hu, C. X.; Zhu, Z. Y.; Zhao, M.; Wang, Q.; Zhang, H. L. Preparation of large size, few-layer black phosphorus nanosheets via phytic acid-assisted liquid exfoliation. Chem. Commun. 2016, 52, 8107–8110.

    CAS  Google Scholar 

  94. Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563.

    CAS  Google Scholar 

  95. Ren, X. H.; Zhou, J.; Qi, X.; Liu, Y. D.; Huang, Z. Y.; Li, Z. J.; Ge, Y. Q.; Dhanabalan, S. C.; Ponraj, J. S.; Wang, S. Y. et al. Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 2017, 7, 1700396.

    Google Scholar 

  96. Brent, J. R.; Savjani, N.; Lewis, E. A.; Haigh, S. J.; Lewis, D. J.; O’Brien, P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 2014, 50, 13338–13341.

    CAS  Google Scholar 

  97. Kang, J.; Wood, J. D.; Wells, S. A.; Lee, J. H.; Liu, X. L.; Chen, K. S.; Hersam, M. C. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 2015, 9, 3596–3604.

    CAS  Google Scholar 

  98. Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C. H.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. High-quality black phosphorus atomic layers by liquid-phase exfoliation. Adv. Mater. 2015, 27, 1887–1892.

    CAS  Google Scholar 

  99. Hu, G. H.; Albrow-Owen, T.; Jin, X. X.; Ali, A.; Hu, Y. W.; Howe, R. C. T.; Shehzad, K.; Yang, Z. Y.; Zhu, X. K.; Woodward, R. I. et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 2017, 8, 278.

    Google Scholar 

  100. Zhang, Y. Y.; Rui, X. H.; Tang, Y. X.; Liu, Y. Q.; Wei, J. Q.; Chen, S.; Leow, W. R.; Li, W. H.; Liu, Y. J.; Deng, J. Y. et al. Wet-chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1502409.

    Google Scholar 

  101. Tian, B.; Tian, B. N.; Smith, B.; Scott, M. C.; Lei, Q.; Hua, R. N.; Tian, Y.; Liu, Y. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proc. Natl. Acad. Sci. USA 2018, 115, 4345–4350.

    CAS  Google Scholar 

  102. Zhao, G.; Wang, T. L.; Shao, Y. L.; Wu, Y. Z.; Huang, B. B.; Hao, X. P. A novel mild phase-transition to prepare black phosphorus nanosheets with excellent energy applications. Small 2017, 13, 1602243.

    Google Scholar 

  103. Von Hippel, A. Structure and conductivity in the VIb group of the periodic system. J. Chem. Phys. 1948, 16, 372–380.

    CAS  Google Scholar 

  104. Cherin, P.; Unger, P. Two-dimensional refinement of the crystal structure of tellurium. Acta Crystallogr. 1967, 23, 670–671.

    CAS  Google Scholar 

  105. Martin, R. M.; Lucovsky, G.; Helliwell, K. Intermolecular bonding and lattice dynamics of Se and Te. Phys. Rev. B 1976, 13, 1383–1385.

    CAS  Google Scholar 

  106. Singh, J.; Jamdagni, P.; Jakhar, M.; Kumar, A. Stability, electronic and mechanical properties of chalcogen (Se and Te) monolayers. Phys. Chem. Chem. Phys. 2020, 22, 5749–5755.

    CAS  Google Scholar 

  107. Qiao, J. S.; Pan, Y. H.; Yang, F.; Wang, C.; Chai, Y.; Ji, W. Few-layer tellurium: One-dimensional-like layered elementary semiconductor with striking physical properties. Sci. Bull. 2018, 63, 159–168.

    CAS  Google Scholar 

  108. Du, Y. C.; Qiu, G.; Wang, Y. X.; Si, M. W.; Xu, X. F.; Wu, W. Z.; Ye, P. D. One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport. Nano Lett. 2017, 17, 3965–3973.

    CAS  Google Scholar 

  109. Skadron, P.; Johnson, V. A. Anisotropy and annealing behavior in extrinsic single-crystal tellurium. J. Appl. Phys. 1966, 37, 1912–1917.

    CAS  Google Scholar 

  110. Yang, S. L.; Chen, B.; Qin, Y.; Zhou, Y.; Liu, L.; Durso, M.; Zhuang, H. L.; Shen, Y. X.; Tongay, S. Highly crystalline synthesis of tellurene sheets on two-dimensional surfaces: Control over helical chain direction of tellurene. Phys. Rev. Mater. 2018, 2, 104002.

    CAS  Google Scholar 

  111. Wang, Q. S.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z. X.; He, J. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497–7505.

    CAS  Google Scholar 

  112. Huang, X. C.; Guan, J. Q.; Lin, Z. J.; Liu, B.; Xing, S. Y.; Wang, W. H.; Guo, J. D. Epitaxial growth and band structure of Te film on graphene. Nano Lett. 2017, 17, 4619–4623.

    CAS  Google Scholar 

  113. Chen, J. L.; Dai, Y. W.; Ma, Y. Q.; Dai, X. Q.; Ho, W.; Xie, M. H. Ultrathin β-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Nanoscale 2017, 9, 15945–15948.

    CAS  Google Scholar 

  114. Apte, A.; Bianco, E.; Krishnamoorthy, A.; Yazdi, S.; Rao, R.; Glavin, N.; Kumazoe, H.; Varshney, V.; Roy, A.; Shimojo, F. Polytypism in ultrathin tellurium. 2D Mater. 2018, 6, 015013.

    Google Scholar 

  115. Xie, Z. J.; Xing, C. Y.; Huang, W. C.; Fan, T. J.; Li, Z. J.; Zhao, J. L.; Xiang, Y. J.; Guo, Z. N.; Li, J. Q.; Yang, Z. G. et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 2018, 28, 1705833.

    Google Scholar 

  116. Clearfield, A. The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Crystallogr. 1963, 16, 135–142.

    CAS  Google Scholar 

  117. Huster, J. Notizen: Die Kristallstruktur von BaTiS3/crystal structure of BaTiS3. Z Naturforschung B 1980, 35, 775.

    Google Scholar 

  118. Wang, J.; Kovnir, K. Giant anisotropy detected. Nat. Photonics 2018, 12, 382–383.

    CAS  Google Scholar 

  119. Lu, J. P.; Yang, J.; Carvalho, A.; Liu, H. W.; Lu, Y. R.; Sow, C. H. Light-matter interactions in phosphorene. Acc. Chem. Res. 2016, 49, 1806–1815.

    CAS  Google Scholar 

  120. Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

    CAS  Google Scholar 

  121. Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed. 2015, 54, 2366–2369.

    CAS  Google Scholar 

  122. Mao, N. N.; Tang, J. Y.; Xie, L. M.; Wu, J. X.; Han, B. W.; Lin, J. J.; Deng, S. B.; Ji, W.; Xu, H.; Liu, K. H. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 2016, 138, 300–305.

    CAS  Google Scholar 

  123. Li, D.; Jussila, H.; Karvonen, L.; Ye, G. J.; Lipsanen, H.; Chen, X. H.; Sun, Z. P. Polarization and thickness dependent absorption properties of black phosphorus: New saturable absorber for ultrafast pulse generation. Sci. Rep. 2015, 5, 15899.

    CAS  Google Scholar 

  124. Deng, B. C.; Frisenda, R.; Li, C.; Chen, X. L.; Castellanos-Gomez, A.; Xia, F. N. Progress on black phosphorus photonics. Adv. Opt. Mater. 2018, 6, 1800365.

    Google Scholar 

  125. Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y. W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590–9596.

    CAS  Google Scholar 

  126. He, J. Q.; He, D. W.; Wang, Y. S.; Cui, Q. N.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Exceptional and anisotropic transport properties of photocarriers in black phosphorus. ACS Nano 2015, 9, 6436–6442.

    CAS  Google Scholar 

  127. Lan, S. F.; Rodrigues, S.; Kang, L.; Cai, W. S. Visualizing optical phase anisotropy in black phosphorus. ACS Photonics 2016, 3, 1176–1181.

    CAS  Google Scholar 

  128. Cai, Y. Q.; Zhang, G.; Zhang, Y. W. Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 2014, 4, 6677.

    CAS  Google Scholar 

  129. Low, T.; Rodin, A. S.; Carvalho, A.; Jiang, Y. J.; Wang, H.; Xia, F. N.; Neto, A. C. H. Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B 2014, 90, 075434.

    CAS  Google Scholar 

  130. Zhang, G. W.; Huang, S. Y.; Chaves, A.; Song, C. Y.; Özçelik, V. O.; Low, T.; Yan, H. G. Infrared fingerprints of few-layer black phosphorus. Nat. Commun. 2017, 8, 14071.

    CAS  Google Scholar 

  131. Whitney, W. S.; Sherrott, M. C.; Jariwala, D.; Lin, W. H.; Bechtel, H. A.; Rossman, G. R.; Atwater, H. A. Field effect optoelectronic modulation of quantum-confined carriers in black phosphorus. Nano Lett. 2017, 17, 78–84.

    CAS  Google Scholar 

  132. Li, Y. Y.; Hu, Z. X.; Lin, S. H.; Lai, S. K.; Ji, W.; Lau, S. P. Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain. Adv. Funct. Mater. 2017, 27, 1600986.

    Google Scholar 

  133. Peng, X. H.; Wei, Q.; Copple, A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 2014, 90, 085402.

    CAS  Google Scholar 

  134. Rodin, A. S.; Carvalho, A.; Neto, A. H. C. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 2014, 112, 176801.

    CAS  Google Scholar 

  135. Quereda, J.; San-Jose, P.; Parente, V.; Vaquero-Garzon, L.; Molina-Mendoza, A. J.; Agraït, N.; Rubio-Bollinger, G.; Guinea, F.; Roldán, R.; Castellanos-Gomez, A. Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 2016, 16, 2931–2937.

    CAS  Google Scholar 

  136. Liu, Q. H.; Zhang, X. W.; Abdalla, L. B.; Fazzio, A.; Zunger, A. Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett. 2015, 15, 1222–1228.

    Google Scholar 

  137. Roldán, R.; Castellanos-Gomez, A. Black phosphorus: A new bandgap tuning knob. Nat. Photonics 2017, 11, 407–409.

    Google Scholar 

  138. Yu, L.; Zhu, Z.; Gao, A. Y.; Wang, J. Z.; Miao, F.; Shi, Y.; Wang, X. M. Electrically tunable optical properties of few-layer black arsenic phosphorus. Nanotechnology 2018, 29, 484001.

    Google Scholar 

  139. Amani, M.; Tan, C. L.; Zhang, G.; Zhao, C. S.; Bullock, J.; Song, X. H.; Kim, H.; Shrestha, V. R.; Gao, Y.; Crozier, K. B. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 2018, 12, 7253–7263.

    CAS  Google Scholar 

  140. Sang, D. K.; Wen, B.; Gao, S.; Zeng, Y. Z.; Meng, F. X.; Guo, Z. N.; Zhang, H. Electronic and optical properties of two-dimensional tellurene: From first-principles calculations. Nanomaterials 2019, 9, 1075.

    CAS  Google Scholar 

  141. Liu, Y. Y.; Wu, W. Z.; Goddard III, W. A. Tellurium: Fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc. 2018, 140, 550–553.

    CAS  Google Scholar 

  142. Wang, J. J.; Guo, Y. R.; Qiao, C.; Shen, H.; Zhang, R. J.; Zheng, Y. X.; Chen, L. Y.; Wang, S. Y.; Jia, Y.; Su, W. S. Investigation of electronic property modulation driven by strain in monolayer tellurium. Chin. J. Phys. 2019, 62, 172–178.

    CAS  Google Scholar 

  143. Wang, J. J.; Guo, Y. R.; Shen, H.; Chen, Y. Y.; Zhang, R. J.; Zheng, Y. X.; Chen, L. Y.; Wang, S. Y.; Jia, Y.; Chen, H. Y. et al. A first-principles study of strain tuned optical properties in monolayer tellurium. RSC Adv. 2019, 9, 41703–41708.

    CAS  Google Scholar 

  144. Zhu, Z.; Cai, C.; Niu, C.; Wang, C.; Sun, Q.; Han, X.; Guo, Z.; Jia, Y. Tellurene—A monolayer of tellurium from first-principles prediction. 2016, arXiv:1605.03253v1. arXiv.org e-Print archive. https://arxiv.org/abs/1605.03253v1 (accessed Oct 16, 2020).

  145. Wang, C.; Zhou, X. Y.; Qiao, J. S.; Zhou, L. W.; Kong, X. H.; Pan, Y. H.; Cheng, Z. H.; Chai, Y.; Ji, W. Charge-governed phase manipulation of few-layer tellurium. Nanoscale 2018, 10, 22263–22269.

    CAS  Google Scholar 

  146. Wang, J. J.; Shen, H.; Yu, Z. Y.; Wang, S. Y.; Chen, Y. Y.; Wu, B. R.; Su, W. S. Electric field-tunable structural phase transitions in monolayer tellurium. ACS Omega 2020, 5, 18213–18217.

    CAS  Google Scholar 

  147. Zhang, G. W.; Chaves, A.; Huang, S. Y.; Wang, F. J.; Xing, Q. X.; Low, T.; Yan, H. G. Determination of layer-dependent exciton binding energies in few-layer black phosphorus. Sci. Adv. 2018, 4, eaap9977.

    Google Scholar 

  148. Niu, S. Y.; Milam-Guerrero, J.; Zhou, Y. C.; Ye, K.; Zhao, B. Y.; Melot, B. C.; Ravichandran, J. Thermal stability study of transition metal perovskite sulfides. J. Mater. Res. 2018, 33, 4135–4143.

    CAS  Google Scholar 

  149. Saleh, B. E. A.; Teich, M. C. Fundamentals of Photonics, 3rd ed.; John Wiley & Sons: Hoboken, 2019.

    Google Scholar 

  150. Yariv, A.; Yeh, P. Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering), 6th ed.; Oxford University Press: New York, 2006.

    Google Scholar 

  151. Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer, F. P. G.; Gatti, F.; Koppens, F. H. L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368.

    CAS  Google Scholar 

  152. Soci, C.; Zhang, A.; Bao, X. Y.; Kim, H.; Lo, Y.; Wang, D. L. Nanowire photodetectors. J. Nanosci. Nanotechnol. 2010, 10, 1430–1449.

    CAS  Google Scholar 

  153. Furchi, M. M.; Polyushkin, D. K.; Pospischil, A.; Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 2014, 14, 6165–6170.

    CAS  Google Scholar 

  154. Kufer, D.; Konstantatos, G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 2015, 15, 7307–7313.

    CAS  Google Scholar 

  155. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

    CAS  Google Scholar 

  156. Zhao, Y. T.; Wang, H. Y.; Huang, H.; Xiao, Q. L.; Xu, Y. H.; Guo, Z. N.; Xie, H. H.; Shao, J. D.; Sun, Z. B.; Han, W. J. et al. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem., Int. Ed. 2016, 55, 5003–5007.

    CAS  Google Scholar 

  157. Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Castro Neto, A. H.; Ozyilmaz, B. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138–4145.

    CAS  Google Scholar 

  158. Edmonds, M. T.; Tadich, A.; Carvalho, A.; Ziletti, A.; O’Donnell, K. M.; Koenig, S. P.; Coker, D. F.; Özyilmaz, B.; Neto, A. H. C.; Fuhrer, M. S. Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces 2015, 7, 14557–14562.

    CAS  Google Scholar 

  159. Yasaei, P.; Behranginia, A.; Foroozan, T.; Asadi, M.; Kim, K.; Khalili-Araghi, F.; Salehi-Khojin, A. Stable and selective humidity sensing using stacked black phosphorus flakes. ACS Nano 2015, 9, 9898–9905.

    CAS  Google Scholar 

  160. Viti, L.; Hu, J.; Coquillat, D.; Politano, A.; Consejo, C.; Knap, W.; Vitiello, M. S. Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies. Adv. Mater. 2016, 28, 7390–7396.

    CAS  Google Scholar 

  161. Tayari, V.; Hemsworth, N.; Fakih, I.; Favron, A.; Gaufrès, E.; Gervais, G.; Martel, R.; Szkopek, T. Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat. Commun. 2015, 6, 7702.

    CAS  Google Scholar 

  162. Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 2015, 9, 247–252.

    CAS  Google Scholar 

  163. Chen, C.; Youngblood, N.; Peng, R. M.; Yoo, D.; Mohr, D. A.; Johnson, T. W.; Oh, S. H.; Li, M. Three-dimensional integration of black phosphorus photodetector with silicon photonics and nanoplasmonics. Nano Lett. 2017, 17, 985–991.

    CAS  Google Scholar 

  164. Chen, C.; Youngblood, N.; Li, M. Study of black phosphorus anisotropy on silicon photonic waveguide. In Proceedings of 2015 Optoelectronics Global Conference, Shenzhen, China, 2015, pp 1–3.

  165. Youngblood, N.; Li, M. Ultrafast photocurrent measurements of a black phosphorus photodetector. Appl. Phys. Lett. 2017, 110, 051102.

    Google Scholar 

  166. Jiang, Z.; Henriksen, E. A.; Tung, L. C.; Wang, Y. J.; Schwartz, M. E.; Han, M. Y.; Kim, P.; Stormer, H. L. Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 2007, 98, 197403.

    CAS  Google Scholar 

  167. Li, D. B.; Sun, X. J.; Song, H.; Li, Z. M.; Chen, Y. R.; Jiang, H.; Miao, G. Q. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv. Mater. 2012, 24, 845–849.

    CAS  Google Scholar 

  168. Li, W.; Valentine, J. G. Harvesting the loss: Surface plasmon-based hot electron photodetection. Nanophotonics 2017, 6, 177–179.

    Google Scholar 

  169. Dorodnyy, A.; Salamin, Y.; Ma, P.; Plestina, J. V.; Lassaline, N.; Mikulik, D.; Romero-Gomez, P.; Morral, A. F.; Leuthold, J. Plasmonic photodetectors. IEEE J. Sel. Top. Quant. Electron. 2018, 24, 4600313.

    Google Scholar 

  170. Clément, N.; Nishiguchi, K.; Fujiwara, A.; Vuillaume, D. One-by-one trap activation in silicon nanowire transistors. Nat. Commun. 2010, 1, 92.

    Google Scholar 

  171. Kumada, N.; Parmentier, F. D.; Hibino, H.; Glattli, D. C.; Roulleau, P. Shot noise generated by graphene p-n junctions in the quantum Hall effect regime. Nat. Commun. 2015, 6, 8068.

    CAS  Google Scholar 

  172. Deng, Y. X.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y. J.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X. F.; Ye, P. D. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. ACS Nano 2014, 8, 8292–8299.

    CAS  Google Scholar 

  173. Cao, S. W.; Xing, Y. H.; Han, J.; Luo, X.; Lv, W. X.; Lv, W. M.; Zhang, B. S.; Zeng, Z. M. Ultrahigh-photoresponsive UV photodetector based on a BP/ReS2 heterostructure p-n diode. Nanoscale 2018, 10, 16805–16811.

    CAS  Google Scholar 

  174. Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692–699.

    CAS  Google Scholar 

  175. Zhu, W. K.; Wei, X.; Yan, F. G.; Lv, Q. S.; Hu, C.; Wang, K. Y. Broadband polarized photodetector based on p-BP/n-ReS2 heterojunction. J. Semicond. 2019, 40, 092001.

    CAS  Google Scholar 

  176. Huang, M. Q.; Li, S. M.; Zhang, Z. F.; Xiong, X.; Li, X. F.; Wu, Y. Q. Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 2017, 12, 1148–1154.

    CAS  Google Scholar 

  177. Xiong, X.; Kang, J. Y.; Hu, Q. L.; Gu, C. R.; Gao, T. T.; Li, X. F.; Wu, Y. Q. Reconfigurable logic-in-memory and multilingual artificial synapses based on 2D heterostructures. Adv. Funct. Mater. 2020, 30, 1909645.

    CAS  Google Scholar 

  178. Gao, A. Y.; Lai, J. W.; Wang, Y. J.; Zhu, Z.; Zeng, J. W.; Yu, G. L.; Wang, N. Z.; Chen, W. C.; Cao, T. J.; Hu, W. D. et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217–222.

    CAS  Google Scholar 

  179. Li, L.; Engel, M.; Farmer, D. B.; Han, S. J.; Wong, H. S. P. High-performance p-type black phosphorus transistor with scandium contact. ACS Nano 2016, 10, 4672–4677.

    CAS  Google Scholar 

  180. Dolui, K.; Rungger, I.; Sanvito, S. Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys. Rev. B 2013, 87, 165402.

    Google Scholar 

  181. Yau, L. D.; Sah, C. T. Theory and experiments of low-frequency generation-recombination noise in MOS transistors. IEEE Trans. Electron Devices 1969, 16, 170–177.

    Google Scholar 

  182. Copeland, J. A. Semiconductor impurity analysis from low-frequency noise spectra. IEEE Trans. Electron Devices 1971, 18, 50–53.

    CAS  Google Scholar 

  183. Wu, J. B.; Zhao, H.; Li, Y. R.; Ohlberg, D.; Shi, W.; Wu, W.; Wang, H.; Tan, P. H. Monolayer molybdenum disulfide nanoribbons with high optical anisotropy. Adv. Opt. Mater. 2016, 4, 756–762.

    CAS  Google Scholar 

  184. Qiao, X. F.; Wu, J. B.; Zhou, L. W.; Qiao, J. S.; Shi, W.; Chen, T.; Zhang, X.; Zhang, J.; Ji, W.; Tan, P. H. Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2Nanoscale 2016, 8, 8324–8332.

    CAS  Google Scholar 

  185. Zhao, H.; Wu, J. B.; Zhong, H. X.; Guo, Q. S.; Wang, X. M.; Xia, F. N.; Yang, L.; Tan, P. H.; Wang, H. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res. 2015, 8, 3651–3661.

    CAS  Google Scholar 

  186. Yang, S. X.; Hu, C. G.; Wu, M. H.; Shen, W. F.; Tongay, S.; Wu, K. D.; Wei, B.; Sun, Z. Y.; Jiang, C. B.; Huang, L. et al. In-plane optical anisotropy and linear dichroism in low-symmetry layered TlSe. ACS Nano 2018, 12, 8798–8807.

    CAS  Google Scholar 

  187. Zhou, Z. Q.; Long, M. S.; Pan, L. F.; Wang, X. T.; Zhong, M. Z.; Blei, M.; Wang, J. L.; Fang, J. Z.; Tongay, S.; Hu, W. D. et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano 2018, 12, 12416–12423.

    CAS  Google Scholar 

  188. Tong, L.; Huang, X. Y.; Wang, P.; Ye, L.; Peng, M.; An, L. C.; Sun, Q. D.; Zhang, Y.; Yang, G. M.; Li, Z. et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 2020, 11, 2308.

    CAS  Google Scholar 

  189. Huang, M. Q.; Wang, M. L.; Chen, C.; Ma, Z. W.; Li, X. F.; Han, J. B.; Wu, Y. Q. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 2016, 28, 3481–3485.

    CAS  Google Scholar 

  190. Vorobyev, A. Y.; Guo, C. L. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals. J. Appl. Phys. 2008, 103, 043513.

    Google Scholar 

  191. Girard-Desprolet, R.; Boutami, S.; Lhostis, S.; Vitrant, G. Angular and polarization properties of cross-holes nanostructured metallic filters. Opt. Express 2013, 21, 29412–29424.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Army Research Office (No. W911NF1910111).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangbin Wu or Han Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wang, N., Yan, X. et al. Emerging low-dimensional materials for mid-infrared detection. Nano Res. 14, 1863–1877 (2021). https://doi.org/10.1007/s12274-020-3128-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3128-7

Keywords

Navigation