Skip to main content
Log in

Lattice-strained nanotubes facilitate efficient natural sunlight-driven CO2 photoreduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Photocatalytic reduction of CO2 holds tremendous promise for alleviating the energy crisis. Despite the progress that has been made, there are still some challenges to overcome, such as the realization under real sunlight rather than the simulation condition. In this work, ultrathin Ni2(OH)(PO4) nanotubes (NTs) prepared through hydrothermal route are applied as a novel catalyst for photocatalytic reduction of CO2 under real sunlight. The prepared Ni2(OH)(PO4) NTs exhibit a 11.3 µmol·h−1 CO production rate with 96.1% CO selectivity. Interestingly, Ni2(OH)(PO4) NTs have a positive impact on the facilitation of photoreduction in diluted CO2. Notably, when the system is performed under real sunlight, Ni2(OH)(PO4) NTs afford an accumulated CO of ca. 26.8 µmol with 96.9% CO selectivity, exceeding most previous inorganic catalysts under simulated irradiation in the laboratory. Our experimental results demonstrate that the multisynergetic effects induced by surface-OH and the lattice strain serve as highly active sites for CO2 molecular adsorption and activation as well as electron transfer, hence enhancing photoreduction activity. Therefore, this work provides experimental basis that CO2 photocatalysis can be put into practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, R.; Ma, X. L.; Cheong, W. C.; Zhang, C.; Zhu, W.; Pei, J. J.; Zhang, K. Y.; Wang, B.; Liang, S. Y.; Liu, Y. X. et al. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Res. 2019, 12, 2866–2871.

    Article  CAS  Google Scholar 

  2. Chen, W. Y.; Han, B.; Tian, C.; Liu, X. M.; Liang, S. J.; Deng, H.; Lin, Z. MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction. Appl. Catal. B 2019, 244, 996–1003.

    Article  CAS  Google Scholar 

  3. Liu, L. F.; Zhang, J. L.; Tan, X. N.; Zhang, B. X.; Shi, J. B.; Cheng, X. Y.; Tan, D. X.; Han, B. X.; Zheng, L. R.; Zhang, F. Y. Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Res. 2020, 13, 983–988.

    Article  CAS  Google Scholar 

  4. Wang, H. P.; Zhang, L.; Wang, K. F.; Sun, X.; Wang, W. Z. Enhanced photocatalytic CO2 reduction to methane over WO3·0.33H2O via Mo doping. Appl. Catal. B 2019, 243, 771–779.

    Article  CAS  Google Scholar 

  5. Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed. 2018, 57, 16811–16815.

    Article  CAS  Google Scholar 

  6. Wang, Y.; Huang, N. Y.; Shen, J. Q.; Liao, P. Q.; Chen, X. M.; Zhang, J. P. Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction. J. Am. Chem. Soc. 2018, 140, 38–41.

    Article  CAS  Google Scholar 

  7. Yi, L.; Zhao, W. H.; Huang, Y. H.; Wu, X. Y.; Wang, J. L.; Zhang, G. K. Tungsten bronze Cs0.33WO3 nanorods modified by molybdenum for improved photocatalytic CO2 reduction directly from air. Sci. China Mater. 2020, 63, 2206–2214.

    Article  CAS  Google Scholar 

  8. Wu, J.; Li, X. D.; Shi, W.; Ling, P. Q.; Sun, Y. F.; Jiao, X. C.; Gao, S.; Liang, L.; Xu, J. Q.; Yan, W. S. et al. Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew. Chem., Int. Ed. 2018, 130, 8855–8859.

    Article  Google Scholar 

  9. Chen, S. C.; Wang, H.; Kang, Z. X.; Jin, S.; Zhang, X. D.; Zheng, X. S.; Qi, Z. M.; Zhu, J. F.; Pan, B. C.; Xie, Y. Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nat. Commun. 2019, 10, 788.

    Article  CAS  Google Scholar 

  10. Choi, K. M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C. A.; Barmanbek, J. T. D.; Alshammari, A. S.; Yang, P. D.; Yaghi, O. M. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J. Am. Chem. Soc. 2017, 139, 356–362.

    Article  CAS  Google Scholar 

  11. Xia, Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Liu, G. Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci. China Mater. 2020, 63, 552–565.

    Article  CAS  Google Scholar 

  12. You, B.; Tang, M. T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X. L.; Li, H. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 2019, 31, 1807001.

    Article  CAS  Google Scholar 

  13. Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.

    Article  CAS  Google Scholar 

  14. Zhu, H.; Gao, G. H.; Du, M. L.; Zhou, J. H.; Wang, K.; Wu, W. B.; Chen, X.; Li, Y.; Ma, P. M.; Dong, W. F. et al. Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis. Adv. Mater. 2018, 30, 1707301.

    Google Scholar 

  15. Wang, L.; Zeng, Z. H.; Gao, W. P.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X. Q.; Wang, C.; Greeley, J. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science 2019, 363, 870–874.

    Article  CAS  Google Scholar 

  16. Hwang, D. Y.; Choi, K. H.; Park, J. E.; Suh, D. H. Highly efficient hydrogen evolution reaction by strain and phase engineering in composites of Pt and MoS2 nano-scrolls. Phys. Chem. Chem. Phys. 2017, 19, 18356–18365.

    Article  CAS  Google Scholar 

  17. Ding, F.; Ji, H. X.; Chen, Y. H.; Herklotz, A.; Dörr, K.; Mei, Y. F.; Rastelli, A.; Schmidt, O. G. Stretchable graphene: A close look at fundamental parameters through biaxial straining. Nano Lett. 2010, 10, 3453–3458.

    Article  CAS  Google Scholar 

  18. Ni, B.; Liu, H. L.; Wang, P. P.; He, J.; Wang, X. General synthesis of inorganic single-walled nanotubes. Nat. Commun. 2015, 6, 8756.

    Article  CAS  Google Scholar 

  19. Krasilin, A. A.; Nevedomsky, V. N.; Gusarov, V. V. Comparative energy modeling of multiwalled Mg3Si2O5(OH)4 and Ni3Si2O5(OH)4 nanoscroll growth. J. Phys. Chem. C 2017, 121, 12495–12502.

    Article  CAS  Google Scholar 

  20. Lourenço, M. P.; de Oliveira, C.; Oliveira A. F.; Guimarães, L.; Duarte, H. A. Structural, electronic, and mechanical properties of single-walled chrysotile nanotube models. J. Phys. Chem. C 2012, 116, 9405–9411.

    Article  CAS  Google Scholar 

  21. Huang, H. W.; Jia, H. H.; Liu, Z.; Gao, P. F.; Zhao, J. T.; Luo, Z. L.; Yang, J. L.; Zeng, J. Understanding of strain effects in the electrochemical reduction of CO2: Using Pd nanostructures as an ideal platform. Angew. Chem., Int. Ed. 2017, 56, 3594–3598.

    Article  CAS  Google Scholar 

  22. Bian, W.; Huang, Y. C.; Xu, X. B.; Din, M. A. U.; Xie, G.; Wang, X. Iron hydroxide-modified nickel hydroxylphosphate single-wall nanotubes as efficient electrocatalysts for oxygen evolution reactions. ACS Appl. Mater. Interfaces 2018, 10, 9407–9414.

    Article  CAS  Google Scholar 

  23. Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.

    Article  CAS  Google Scholar 

  24. Ma, B.; Zhao, J. P.; Ge, Z. H.; Chen, Y. T.; Yuan, Z. H. 5 nm NiCoP nanoparticles coupled with g-C3N4 as high-performance photocatalyst for hydrogen evolution. Sci. China Mater. 2020, 63, 258–266.

    Article  CAS  Google Scholar 

  25. Yang, Z. B.; Liang, X. Self-magnetic-attracted NixFe(1−x)@NixFe(1−x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction. Nano Res. 2020, 13, 461–466.

    Article  CAS  Google Scholar 

  26. Di, J.; Zhu, C.; Ji, M. X.; Duan, M. L.; Long, R.; Yan, C.; Gu, K. Z.; Xiong, J.; She, Y. B.; Xia, J. X. et al. Defect-rich Bi12O17Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 14847–14851.

    Article  CAS  Google Scholar 

  27. Xiong, Y. J.; Ma, Y. N.; Zou, L. L.; Han, S. B.; Chen, H.; Wang, S.; Gu, M.; Shen, Y.; Zhang, L. P.; Xia, Z. H. et al. N-doping induced tensile-strained Pt nanoparticles ensuring an excellent durability of the oxygen reduction reaction. J. Catal. 2020, 382, 247–255.

    Article  CAS  Google Scholar 

  28. Han, B.; Song, J. N.; Liang, S. J.; Chen, W. Y.; Deng, H.; Ou, X. W.; Xu, Y. J.; Lin, Z. Hierarchical NiCo2O4 hollow nanocages for photoreduction of diluted CO2: Adsorption and active sites engineering. Appl. Catal. B 2020, 260, 118208.

    Article  CAS  Google Scholar 

  29. Han, B.; Ou, X. W.; Zhong, Z. Q.; Liang, S. J.; Deng, H.; Lin, Z. Rational design of FeNi bimetal modified covalent organic frameworks for photoconversion of anthropogenic CO2 into widely tunable syngas. Small 2020, 16, 2002985.

    Article  CAS  Google Scholar 

  30. Liang, X.; Wang, X.; Zhuang, J.; Chen, Y.; Wang, D.; Li, Y. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv. Funct. Mater. 2006, 16, 1805–1813.

    Article  CAS  Google Scholar 

  31. Wang, Z. Y.; Jiang, M.; Qin, J. N.; Zhou, H.; Ding, Z. X. Reinforced photocatalytic reduction of CO2 to CO by a ternary metal oxide NiCo2O4. Phys. Chem. Chem. Phys. 2015, 17, 16040–16046.

    Article  CAS  Google Scholar 

  32. Wang, S. B.; Guan, B. Y.; Lou, X. W. Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction. Energy Environ. Sci. 2018, 11, 306–310.

    Article  CAS  Google Scholar 

  33. Wang, Y.; Wang, S. B.; Zhang, S. L.; Lou, X. W. D. Formation of hierarchical FeCoS2-CoS2 double-shelled nanotubes with enhanced performance for photocatalytic reduction of CO2. Angew. Chem., Int. Ed. 2020, 132, 12016–12020.

    Article  Google Scholar 

  34. Chen, W. Y.; Han, B.; Xie, Y. L.; Liang, S. J.; Deng, H.; Lin, Z. Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chem. Eng. J. 2020, 391, 123519.

    Article  CAS  Google Scholar 

  35. Tian, S. F.; Chen, S. D.; Ren, X. T.; Hu, Y. Q.; Hu, H. Y.; Sun, J. J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672.

    Article  CAS  Google Scholar 

  36. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    Article  CAS  Google Scholar 

  37. Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; Xiong, Y. J. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater. 2018, 30, 1704624.

    Article  CAS  Google Scholar 

  38. Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431.

    Article  CAS  Google Scholar 

  39. Leng, F. C.; Liu, H.; Ding, M. L.; Lin, Q. P.; Jiang, H. L. Boosting photocatalytic hydrogen production of porphyrinic MOFs: The metal location in metalloporphyrin matters. ACS Catal. 2018, 8, 4583–4590.

    Article  CAS  Google Scholar 

  40. Huang, L. X.; Han, B.; Huang, X. H.; Liang, S. J.; Deng, Z. Q.; Chen, W. Y.; Peng, M.; Deng, H. Ultrathin 2D/2D ZnIn2S4/MoS2 hybrids for boosted photocatalytic hydrogen evolution under visible light. J. Alloys Compd. 2019, 798, 553–559.

    Article  CAS  Google Scholar 

  41. Li, Q.; Wang, S. C.; Sun, Z. X.; Tang, Q. J.; Liu, Y. Q.; Wang, L. Z.; Wang, H. Q.; Wu, Z. B. Enhanced CH4 selectivity in CO2 photo-catalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749–2759.

    Article  CAS  Google Scholar 

  42. Li, P.; Liu, W.; Dennis, J. S.; Zeng, H. C. Synthetic architecture of MgO/C nanocomposite from hierarchical-structured coordination polymer toward enhanced CO2 capture. ACS Appl. Mater. Interfaces 2017, 9, 9592–9602.

    Article  CAS  Google Scholar 

  43. Zhang, Y. Z.; Xia, B. Q.; Ran, J. R.; Davey, K.; Qiao, S. Z. Atomic-level reactive sites for semiconductor-based photocatalytic CO2 reduction. Adv. Energy Mater. 2020, 10, 1903879.

    Article  CAS  Google Scholar 

  44. Liu, B.; Li, C. M.; Zhang, G. Q.; Yao, X. S.; Chuang, S. S. C.; Li, Z. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catal. 2018, 8, 10446–10456.

    Article  CAS  Google Scholar 

  45. Torres, J. A.; Nogueira, A. E.; da Silva, G. T. S. T.; Lopes, O. F.; Wang, Y. J.; He, T.; Ribeiro, C. Enhancing TiO2 activity for CO2 photoreduction through MgO decoration. J. CO2Util. 2020, 35, 106–114.

    Article  CAS  Google Scholar 

  46. Meng, X. G.; Ouyang, S. X.; Kako, T.; Li, P.; Yu, Q.; Wang, T.; Ye, J. H. Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chem. Commun. 2014, 50, 11517–11519.

    Article  CAS  Google Scholar 

  47. Yang, Y.; Wu, J. J.; Xiao, T. T.; Tang, Z.; Shen, J. Y.; Li, H. J.; Zhou, Y.; Zou, Z. G. Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction. Appl. Catal. B 2019, 255, 117771.

    Article  CAS  Google Scholar 

  48. Chen, Y. Z.; Li, H. L.; Zhao, W. H.; Zhang, W. B.; Li, J. W.; Li, W.; Zheng, X. S.; Yan, W. S.; Zhang, W. H.; Zhu, J. F. et al. Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity. Nat. Commun. 2019, 10, 1885.

    Article  CAS  Google Scholar 

  49. Dong, Y. C.; Ghuman, K. K.; Popescu, R.; Duchesne, P. N.; Zhou, W. J.; Loh, J. Y. Y.; Jelle, A. A.; Jia, J.; Wang, D.; Mu, X. K. et al. Tailoring surface frustrated Lewis pairs of In2O3−x(OH)y for gas-phase heterogeneous photocatalytic reduction of CO2 by isomorphous substitution of In3+ with Bi3+. Adv. Sci. 2018, 5, 1700732.

    Article  CAS  Google Scholar 

  50. Zhu, W.; Zhang, C. F.; Li, Q.; Xiong, L. K.; Chen, R. X.; Wan, X. B.; Wang, Z.; Chen, W.; Deng, Z.; Peng, Y. Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination. Appl. Catal. B 2018, 238, 339–345.

    Article  CAS  Google Scholar 

  51. Petrie, J. R.; Jeen, H.; Barron, S. C.; Meyer, T. L.; Lee, H. N. Enhancing perovskite electrocatalysis through strain tuning of the oxygen deficiency. J. Am. Chem. Soc. 2016, 138, 7252–7255.

    Article  CAS  Google Scholar 

  52. Jansonius, R. P.; Reid, L. M.; Virca, C. N.; Berlinguette, C. P. Strain engineering electrocatalysts for selective CO2 reduction. ACS Energy Lett. 2019, 4, 980–986.

    Article  CAS  Google Scholar 

  53. Chen, W. Y.; Liu, X. M.; Han, B.; Liang, S. J.; Deng, H.; Lin, Z. Boosted photoreduction of diluted CO2 through oxygen vacancy engineering in NiO nanoplatelets. Nano Res. in press, DOI: https://doi.org/10.1007/s12274-020-3105-1.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21777046 and 21836002), the National Key Research and Development Program of China (No. 2019YFA0210400), the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2016ZT06N569), the Guangdong Science and Technology Program (No. 2020B121201003), and the Science Technology Project of Guangzhou (No. 201803030002). In addition, we gratefully thank Beijing Synchrotron Radiation Facility at beamline 4W1B for providing us the beam time and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Deng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Liu, X., Zhong, Z. et al. Lattice-strained nanotubes facilitate efficient natural sunlight-driven CO2 photoreduction. Nano Res. 14, 2558–2567 (2021). https://doi.org/10.1007/s12274-020-3252-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3252-4

Keywords

Navigation