Skip to main content
Log in

Hierarchical TiO2 nanorods with a highly active surface for photocatalytic CO2 reduction

具有高活性晶面的分级二氧化钛纳米棒光催化二氧化碳还原

  • Article
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Photocatalytic carbon dioxide reduction reaction (CO2RR) has been considered as one of most effective ways to solve the current energy crisis and environmental problems. However, the practical application of photocatalytic CO2RR is largely hindered by lock of efficient catalyst. Here, hierarchical titanium dioxide (TiO2) nanostructures with a highly active {001} surface were successfully synthesized by a facile approach from metal Ti powders. The obtained hierarchical TiO2 nanostructures were composed of TiO2 nanorods, which have a diameter about 5–10 nm and a length of several micrometers. It is found that these nanorods have exposed {001} facets. On the other hand, these hierarchical TiO2 nanostructures have a good light-harvesting efficiency with the help of TiO2 nanorods component and large specific surface area. Therefore, these hierarchical TiO2 nanostructures exhibit a much better activity for photocatalytic CO2 reduction than that of commercial TiO2 (P25). This high activity can be attributed to the synergistic effects of active surface, efficient charge transfer along nanorods and good light harvesting in the nanorod-hierarchical nanostructures.

摘要

光催化二氧化碳还原被认为是能够同时解决能源和环境问题的最有效方式之一。但高效的二氧 化碳还原催化剂的缺乏限制其实际应用。在本文中,我们成功合成了具有{001}高活性晶面的分级二 氧化钛纳米棒结构,纳米棒的直径为5~10 nm,长度为几个微米。分级纳米棒结构使得其具有更大的 比表面积,进而大大促进了光吸收。具有有效电荷传输、更大比表面积及更强光吸收的分级结构二氧 化钛纳米棒与商业的P25 二氧化钛相比具有更强的二氧化碳光催化还原性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LINSEBIGLER A L, LU G Q, YATES J T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results [J]. Chem Rev, 1995, 95: 735–758.

    Article  Google Scholar 

  2. HE H N, GAN Q M, WANG H Y, XU G L, ZHANG X Y, HUANG D, FU F, TANG Y G, AMINE K, SHAO M H. Structure-dependent performance of TiO2/C as anode material for Na-ion batteries [J]. Nano Energy, 2018, 44: 217–227.

    Article  Google Scholar 

  3. ZHANG Q, HE H N, HUANG X B, YAN J, TANG Y G, WANG H Y. TiO2@C nanosheets with highly exposed (001) facets as a high-capacity anode for Na-ion batteries [J]. Chem Eng J, 2018, 332: 57–65.

    Article  Google Scholar 

  4. XUE X, SUN D, ZENG X G, HUANG X B, ZHANG H H, TANG Y G, WANG H Y. Two-step carbon modification of NaTi2(PO4)3 with improved sodium storage performance for Na-ion batteries [J]. Journal of Central South University, 2018, 25(10): 2320–2331.

    Article  Google Scholar 

  5. LIU A Q, LIU K, ZHOU H M, LI H M, QIU X Q, YANG Y, LIU M. Solution evaporation processed high quality perovskite films [J]. Sci Bull, 2018, 63: 1591–1596.

    Article  Google Scholar 

  6. CENTI G, PERATHONER S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels [J]. Catal Today, 2009, 148: 191–205.

    Article  Google Scholar 

  7. PAN J, LIU G, LU G Q, CHENG H M. On the true Photoreactivity Order of {001}, {010}, and {101} facets of anatase TiO2 crystals [J]. Angew Chem Int Ed, 2011, 50: 2133–2137.

    Article  Google Scholar 

  8. ROY N, SOHN Y, PRADHAN D. Synergy of low-energy {101} and high-energy {001} TiO2 crystal facets for enhanced photocatalysis [J]. ACS Nano, 2013, 7: 2532–2540.

    Article  Google Scholar 

  9. LAZZERI M, VITTADINI A, SELLONI A. Erratum: Structure and energetics of stoichiometric TiO2 anatase surfaces [Phys. Rev. B 63, 155409 (2001)] [J]. Phys Rev B, 2002, 65: 119901.

    Article  Google Scholar 

  10. DIEBOLD U. The surface science of titanium dioxide [J]. Surf Sci Rep, 2003, 48: 53–229.

    Article  Google Scholar 

  11. SELLONI A. Fluorine-containing species can cause titania to crystallize with an unusually large fraction of reactive {001} facets [J]. Nat Mater, 2008, 7: 613–615.

    Article  Google Scholar 

  12. YANG H G, SUN C H, QIAO S Z, ZOU J, LIU G, SMITH S C, CHENG H M, LU G Q. Anatase TiO2 single crystals with a large percentage of reactive facets [J]. Nature, 2008, 453: 638–641.

    Article  Google Scholar 

  13. LIU M, PIAO L Y, LU W M, JU S T, ZHAO L, ZHOU C L, YAN Z J, WANG W J. Anatase TiO2 single crystals with exposed {001} and {110} facets facile synthesis and enhanced photocatalysis [J]. Chem Coumm, 2010, 46: 1664–1666.

    Article  Google Scholar 

  14. KAKIHANA M, TADA M, SHIRO M, PETRYKIN V, OSADA M, NAKAMURA Y. Structure and Stability of water soluble (NH4)8[Ti4(C6H4O7)4(O2)4]8H2O [J]. Inorg Chem, 2001, 40: 891–894.

    Article  Google Scholar 

  15. MAO Y B, WONG S S. Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures [J]. J Am Chem Soc, 2006, 128: 8217–8226.

    Article  Google Scholar 

  16. AO Y, FU D, YUAN C. A simple method for the preparation of titania hollow sphere [J]. Catal Commun, 2008, 9: 2574–2577.

    Article  Google Scholar 

  17. YU J G, LIU S W, YU H G. Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation [J]. J Catal, 2007, 249: 59–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-mei Li  (李红梅) or Xiao-qing Qiu  (邱晓清).

Additional information

Foundation item: Project(21872174) supported by the National Natural Science Foundation of China; Projects(2017CX003, 20180018050001) supported by the Innovation-Driven Plan in Central South University, China; Project supported by State Key Laboratory of Powder Metallurgy in Central South University, China; Project(JCYJ20180307151313532) supported by Shenzhen Science and Technology Innovation Project, China; Project supported by the Thousand Youth Talents Plan of China; Project supported by the Hundred Youth Talents Program of Hunan, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Mq., Liu, K., Zhou, Hm. et al. Hierarchical TiO2 nanorods with a highly active surface for photocatalytic CO2 reduction. J. Cent. South Univ. 26, 1503–1509 (2019). https://doi.org/10.1007/s11771-019-4106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-019-4106-7

Key words

关键词

Navigation