Skip to main content
Log in

Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To construct the heterojunctions of TiO2 with other compounds is of great importance for overcoming its inherent shortages and improving the visible-light photocatalytic performance. Here we propose the construction of TiO2/covalent organic framework (COF) heterojunction with tight connection by a supercritical CO2 (SC CO2) method, which helps bridging the transformation paths for photo-induced charge between TiO2 and COF. The produced TiO2/COF heterojunction performs a H2 evolution of 3,962 µmol·g−1·h−1 under visible-light irradiation, which is ∼ 25 times higher than that of pure TiO2 and 4.5 folds higher than that of TiO2/COF synthesized by the conventional solvothermal method. This study opens up new possibilities for constructing heterojunctions for solar energy utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima, A.; Zhang, X. T.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep.2008, 63, 515–582.

    CAS  Google Scholar 

  2. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature1972, 238, 37–38.

    CAS  Google Scholar 

  3. Ola, O.; Maroto-Valer, M. M. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J. Photochem. Photobiol. C: Photochem. Rev.2015, 24, 16–42.

    CAS  Google Scholar 

  4. Low, J.; Cheng, B.; Yu, J. G. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci.2017, 392, 658–686.

    CAS  Google Scholar 

  5. Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S. C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C: Photochem. Rev.2015, 25, 1–29.

    CAS  Google Scholar 

  6. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga. Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science2001, 293, 269–271.

    CAS  Google Scholar 

  7. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev.2007, 11, 401–425.

    CAS  Google Scholar 

  8. Zhang, Z. G.; Huang, Z. F.; Cheng, X. D.; Wang, Q. L.; Chen, Y.; Dong, P. M.; Zhang, X. W. Product selectivity of visible-light photocatalytic reduction of carbon dioxide using titanium dioxide doped by different nitrogen-sources. Appl. Surf. Sci.2015, 355, 45–51.

    CAS  Google Scholar 

  9. Zhang, Q. Y.; Li, Y.; Ackerman, E. A.; Gajdardziska-Josifovska, M.; Li, H. L. Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels. Appl. Catal. A: Gen.2011, 400, 195–202.

    CAS  Google Scholar 

  10. Tian, H.; Zhang, X. L.; Scott, J.; Ng, C.; Amal, R. TiO2-supported copper nanoparticles prepared via ion exchange for photocatalytic hydrogen production. J. Mater. Chem. A2014, 2, 6432–6438.

    CAS  Google Scholar 

  11. Wang, E. J.; Yang, W. S.; Cao, Y. A. Unique surface chemical species on indium doped TiO2 and their effect on the visible light photocatalytic activity. J. Phys. Chem. C2009, 113, 20912–20917.

    Article  CAS  Google Scholar 

  12. Feng, X. J.; Sloppy, J. D.; LaTempa, T. J.; Paulose, M.; Komarneni, S.; Bao, N. Z.; Grimes, C. A. Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: Application to the photocatalytic reduction of carbon dioxide. J. Mater. Chem.2011, 21, 13429–13433.

    CAS  Google Scholar 

  13. Hou, W. B.; Hung, W. H.; Pavaskar, P.; Goeppert, A.; Aykol, M.; Cronin, S. B. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal.2011, 1, 929–936.

    CAS  Google Scholar 

  14. Yu, J. G.; Wang, S. H.; Low, J.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys.2013, 15, 16883–16890.

    CAS  Google Scholar 

  15. Yan, H. J.; Yang, H. X. TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J. Alloys Compd.2011, 509, L26–L29.

    CAS  Google Scholar 

  16. Chen, Y. F.; Huang, W. X.; He, D. L.; Situ, Y.; Huang, H. Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl. Mater. Interfaces2014, 6, 14405–14414.

    CAS  Google Scholar 

  17. Zheng, L. X.; Han, S. C.; Liu, H.; Yu, P. P.; Fang, X. S. Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small2016, 12, 1527–1536.

    CAS  Google Scholar 

  18. Li, H. F.; Yu, H. T.; Quan, X.; Chen, S.; Zhao, H. M. Improved photocatalytic performance of heterojunction by controlling the contact facet: High electron transfer capacity between TiO2 and the {110} facet of BiVO4 caused by suitable energy band alignment. Adv. Funct. Mater.2015, 25, 3074–3080.

    CAS  Google Scholar 

  19. Hao, R. R.; Wang, G. H.; Tang, H.; Sun, L. L.; Xu, C.; Han, D. Y. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B: Environ.2016, 187, 47–58.

    CAS  Google Scholar 

  20. Hou, H. J.; Zhang, X. H.; Huang, D. K.; Ding, X.; Wang, S. Y.; Yang, X. L.; Li, S. Q.; Xiang, Y. G.; Chen, H. Conjugated microporous poly(benzothiadiazole)/TiO2 heterojunction for visible-light-driven H2 production and pollutant removal. Appl. Catal. B: Environ.2017, 203, 563–571.

    CAS  Google Scholar 

  21. Luo, Q.; Ma, H.; Zhang, Y.; Yin, X. W.; Yao, Z. B.; Wang, N.; Li, J. B.; Fan, S. S.; Jiang, K. L.; Lin, H. Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. J. Mater. Chem. A2016, 4, 5569–5577.

    CAS  Google Scholar 

  22. Akhavan, O.; Abdolahad, M.; Abdi, Y.; Mohajerzadeh, S. Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation. Carbon2009, 47, 3280–3287.

    CAS  Google Scholar 

  23. DeSimone, J. M.; Guan, Z.; Elsbernd, C. S. Synthesis of fluoropolymers in supercritical carbon dioxide. Science1992, 257, 945–947.

    CAS  Google Scholar 

  24. Hasell, T.; Parker, D. J.; Jones, H. A.; McAllister, T.; Howdle, S. M. Porous inverse vulcanised polymers for mercury capture. Chem. Commun.2016, 52, 5383–5386.

    CAS  Google Scholar 

  25. Zhang, F. M.; Sheng, J. L.; Yang, Z. D.; Sun, X. J.; Tang, H. L.; Lu, M.; Dong, H.; Shen, F. C.; Liu, J.; Lan, Y. Q. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem., Int. Ed.2018, 57, 12106–12110.

    CAS  Google Scholar 

  26. Üzer, S.; Akman, U.; Hortacsu, Ö. Polymer swelling and impregnation using supercritical CO2: A model-component study towards producing controlled-release drugs. J. Supercrit. Fluids2006, 38, 119–128.

    Google Scholar 

  27. Zhang, W.; He, H. L.; Tian, Y.; Lan, K.; Liu, Q.; Wang, C. Y.; Liu, Y.; Elzatahry, A.; Che, R. C.; Li, W. et al. Synthesis of uniform ordered mesoporous TiO2 microspheres with controllable phase junctions for efficient solar water splitting. Chem. Sci.2019, 10, 1664–1670.

    CAS  Google Scholar 

  28. Gao, C. H.; Lin, G.; Lei, Z. X.; Zheng, Q.; Lin, J. S.; Lin, Z. A. Facile synthesis of core-shell structured magnetic covalent organic framework composite nanospheres for selective enrichment of peptides with simultaneous exclusion of proteins. J. Mater. Chem. B2017, 5, 7496–7503.

    CAS  Google Scholar 

  29. Vitaku, E.; Dichtel, W. R. Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc.2017, 139, 12911–12914.

    CAS  Google Scholar 

  30. Etacheri, V.; Seery, M. K.; Hinder, S. J.; Pillai, S. C. Highly visible light active TiO2−xNx heterojunction photocatalysts. Chem. Mater.2010, 22, 3843–3853.

    CAS  Google Scholar 

  31. Patrahau, B.; Chaumont, C.; Barloy, L.; Hellwig, P.; Henry, M.; Melin, F.; Pauly, M.; Mobian, P. From a bulk solid to thin films of a hybrid material derived from the [Ti10O12(cat)8(py)8] oxo-cluster and poly(4-vinylpyridine). New J. Chem.2019, 43, 1581–1588.

    CAS  Google Scholar 

  32. Mu, X. W.; Zhan, J.; Feng, X. M.; Yuan, B. H.; Qiu, S. L.; Song, L.; Hu, Y. Novel melamine/o-phthalaldehyde covalent organic frameworks nanosheets: Enhancement flame retardant and mechanical performances of thermoplastic polyurethanes. ACS Appl. Mater. Interfaces2017, 9, 23017–23026.

    CAS  Google Scholar 

  33. Bolis, V.; Bordiga, S.; Lamberti, C.; Zecchina, A.; Carati, A.; Rivetti, F.; Spanò, G.; Petrini, G. A calorimetric, IR, XANES and EXAFS study of the adsorption of NH3 on Ti-silicalite as a function of the sample pre-treatment. Microporous Mesoporous Mater.1999, 30, 67–76.

    CAS  Google Scholar 

  34. Farges, F. A Ti K-edge EXAFS study of the medium range environment around Ti in oxide glasses. J. Non-Cryst. Solids1999, 244, 25–33.

    CAS  Google Scholar 

  35. Reverchon, E. Supercritical fluid extraction and fractionation of essential oils and related products. J. Supercrit. Fluids1997, 10, 1–37.

    CAS  Google Scholar 

  36. Zu, G. Q.; Shen, J.; Zou, L. P.; Wang, F.; Wang, X. D.; Zhang, Y. W.; Yao, X. D. Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon2016, 99, 203–211.

    CAS  Google Scholar 

  37. Liu, H.; Huang, B. L.; Zhou, J. H.; Wang, K.; Yu, Y. S.; Yang, W. W.; Guo, S. J. Enhanced electron transfer and light absorption on imino polymer capped PdAg nanowire networks for efficient room-temperature dehydrogenation of formic acid. J. Mater. Chem. A2018, 6, 1979–1984.

    CAS  Google Scholar 

  38. Gao, M. Y.; Yu, Y. S.; Yang, W. W.; Li, J.; Xu, S. C.; Feng, M.; Li, H. B. Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane. Nanoscale2019, 11, 3506–3513.

    CAS  Google Scholar 

  39. Gholipour, M. R.; Dinh, C. T.; Béland, F.; Do, T. O. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale2015, 7, 8187–8208.

    Google Scholar 

  40. Guo, X.; Li, M. G.; Liu, Y. Q.; Huang, Y. R.; Geng, S.; Yang, W. W.; Yu, Y. S. Hierarchical core-shell electrode with NiWO4 nanoparticles wrapped MnCo2O4 nanowire arrays on Ni foam for high-performance asymmetric supercapacitors. J. Colloid Interface Sci.2020, 563, 405–413.

    CAS  Google Scholar 

  41. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J. L.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev.2014, 114, 9919–9986.

    CAS  Google Scholar 

  42. Liu, H.; Liu, X. Y.; Yang, W. W.; Shen, M. Q.; Geng, S.; Yu, C.; Shen, B.; Yu, Y. S. Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@g-C3N4 Mott-Schottky heterojunction. J. Mater. Chem. A2019, 7, 2022–2026.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports from Ministry of Science and Technology of China (No. 2017YFA0403003), the National Natural Science Foundation of China (Nos. 21525316 and 21673254), Chinese Academy of Sciences (No. QYZDY-SSW-SLH013), and Beijing Municipal Science & Technology Commission (No. Z191100007219009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianling Zhang.

Electronic Supplementary Material

12274_2020_2728_MOESM1_ESM.pdf

Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for highperformance hydrogen evolution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, J., Tan, X. et al. Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Res. 13, 983–988 (2020). https://doi.org/10.1007/s12274-020-2728-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2728-6

Keywords

Navigation