Skip to main content
Log in

Boosted photoreduction of diluted CO2 through oxygen vacancy engineering in NiO nanoplatelets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Converting carbon dioxide (CO2) to diverse value-added products through photocatalysis can validly alleviate the critical issues of greenhouse effect and energy shortages simultaneously. In particular, based on practical considerations, exploring novel catalysts to achieve efficient photoreduction of diluted CO2 is necessary and urgent. However, this process is extremely challenging owing to the disturbance of competitive adsorption at low CO2 concentration. Herein, we delicately synthesize oxygen vacancy-laden NiO nanoplatelets (r-NiO) via calcination under Ar protection to reduce diluted CO2 through visible light irradiation (> 400 nm) assisted by a Ru-based photosensitizer. Benefitting from the strongly CO2 adsorption energy of oxygen vacancies, which was confirmed by density functional calculations, the r-NiO catalysts exhibit higher activity and selectivity (6.28 × 103 µmol·h1·g−1; 82.11%) for diluted CO2-to-CO conversion than that of the normal NiO (3.94 × 103 µmol·h−1·g−1; 65.26%). Besides, the presence of oxygen vacancies can also promote the separation of electron-hole pairs. Our research demonstrates that oxygen vacancies could act as promising candidates for photocatalytic CO2 reduction, offering fundamental guidance for the actual photoreduction of diluted CO2 in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schultz, D. M.; Yoon, T. P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014, 343, 1239176.

    Google Scholar 

  2. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc.. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    CAS  Google Scholar 

  3. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

    CAS  Google Scholar 

  4. Kuriki, R.; Yamamoto, M.; Higuchi, K.; Yamamoto, Y.; Akatsuka, M.; Lu, D. L.; Yagi, S.; Yoshida, T.; Ishitani, O.; Maeda, K. Robust binding between carbon nitride nanosheets and a binuclear ruthenium(II) complex enabling durable, selective CO2 reduction under visible light in aqueous solution. Angew. Chem., Int. Ed. 2017, 56, 4867–4871.

    CAS  Google Scholar 

  5. Chen, W. Y.; Niu, X. J.; An, S. R.; Sheng, H.; Tang, Z. H.; Yang, Z. Q.; Gu, X. H. Emission and distribution of phosphine in paddy fields and its relationship with greenhouse gases. Sci. Total Environ. 2017, 599–600, 952–959.

    Google Scholar 

  6. Lin, R.; Ma, X. L.; Cheong, W. C.; Zhang, C.; Zhu, W.; Pei, J. J.; Zhang, K. Y; Wang, B.; Liang, S. Y.; Liu, Y. X. et al. PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Res. 2019, 12, 2866–2871.

    CAS  Google Scholar 

  7. Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.

    Google Scholar 

  8. Takeda, H.; Ishitani, O. Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coordin. Chem. Rev. 2010, 254, 346–354.

    CAS  Google Scholar 

  9. Chen, W. Y.; Han, B.; Tian, C.; Liu, X. M.; Liang, S. J.; Deng, H.; Lin, Z. MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction. Appl. Catal. B: Environ. 2019, 244, 996–1003.

    CAS  Google Scholar 

  10. Gao, C.; Meng, Q. Q.; Zhao, K.; Yin, H. J.; Wang, D. W.; Guo, J.; Zhao, S. L.; Chang, L.; He, M.; Li, Q. X. et al. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv. Mater. 2016, 28, 6485–6490.

    CAS  Google Scholar 

  11. Wang, S. B.; Ding, Z. X.; Wang, X. C. A stable ZnCo2O4 cocatalyst for photocatalytic CO2 reduction. Chem. Commun. 2015, 57, 1517–1519.

    Google Scholar 

  12. Wang, S. B.; Hou, Y. D.; Wang, X. C. Development of a stable MnCo2O4 cocatalyst for photocatalytic CO2 reduction with visible light. ACS Appl. Mater. Interfaces 2015, 7, 4327–4335.

    CAS  Google Scholar 

  13. Zhao, K.; Zhao, S. L.; Gao, C.; Qi, J.; Yin, H. J.; Wei, D.; Mideksa, M. F.; Wang, X. L.; Gao, Y.; Tang, Z. Y. et al. Metallic cobalt-carbon composite as recyclable and robust magnetic photocatalyst for efficient CO2 reduction. Small 2018, 14, 1800762.

    Google Scholar 

  14. Wang, Z. Y.; Jiang, M.; Qin, J. N.; Zhou, H.; Ding, Z. X. Reinforced photocatalytic reduction of CO2 to CO by a ternary metal oxide NiCo2O4. Phys. Chem. Chem. Phys. 2015, 77, 16040–16046.

    Google Scholar 

  15. Gao, Y.; Ye, L.; Cao, S. Y.; Chen, H.; Yao, Y. N.; Jiang, J.; Sun, L. C. Perovskite hydroxide CoSn(OH)6 nanocubes for efficient photoreduction of CO2 to CO. ACS Sustain. Chem. Eng. 2018, 6, 781–786.

    CAS  Google Scholar 

  16. Wang, S. B.; Yao, W. S.; Lin, J. L.; Ding, Z. X.; Wang, X. C. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem., Int. Ed. 2014, 53, 1034–1038.

    CAS  Google Scholar 

  17. Qin, J. N.; Wang, S. B.; Wang, X. C. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Appl. Catal. B: Environ. 2017, 209, 476–482.

    CAS  Google Scholar 

  18. Wang, M.; Liu, J. X.; Guo, C. M.; Gao, X. S.; Gong, C. H.; Wang, Y.; Liu, B.; Li, X. X.; Gurzadyan, G. G.; Sun, L. C. et al. Metal-organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: The role of the morphology effect. J. Mater. Chem. A 2018, 6, 4768–4775.

    CAS  Google Scholar 

  19. Mu, Q. Q.; Zhu, W.; Yan, G. B.; Lian, Y. B.; Yao, Y. Z.; Li, Q.; Tian, Y. Y.; Zhang, P.; Deng, Z.; Peng, Y. Activity and selectivity regulation through varying the size of cobalt active sites in photocatalytic CO2 reduction. J. Mater. Chem. A 2018, 6, 21110–21119.

    CAS  Google Scholar 

  20. Chen, W. Y.; Han, B.; Xie, Y. L.; Liang, S. J.; Deng, H.; Lin, Z. Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chem. Eng. J. 2020, 391, 123519.

    CAS  Google Scholar 

  21. Wang, X. K.; Liu, J.; Zhang, L.; Dong, L. Z.; Li, S. L.; Kan, Y. H.; Li, D. S.; Lan, Y. Q. Monometallic catalytic models hosted in stable metal-organic frameworks for tunable CO2 photoreduction. ACS Catal. 2019, 9, 1726–1732.

    CAS  Google Scholar 

  22. Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed. 2018, 57, 16811–16815.

    CAS  Google Scholar 

  23. Zhu, W.; Zhang, C. F.; Li, Q.; Xiong, L. K.; Chen, R. X.; Wan, X. B.; Wang, Z.; Chen, W.; Deng, Z.; Peng, Y. Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination. Appl. Catal. B: Environ. 2018, 238, 339–345.

    CAS  Google Scholar 

  24. Wang, S. B.; Guan, B. Y.; Lou, X. W. D. Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction. Energy Environ. Sci. 2018, 11, 306–310.

    CAS  Google Scholar 

  25. Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.

    CAS  Google Scholar 

  26. Niu, K. Y.; Xu, Y.; Wang, H. C.; Ye, R.; Xin, H. L.; Lin, F.; Tian, C. X.; Lum, Y.; Bustillo, K. C.; Doeff, M. M. et al. A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production. Sci. Adv. 2017, 3, e1700921.

    Google Scholar 

  27. Han, B.; Song, J. N.; Liang, S. J.; Chen, W. Y.; Deng, H.; Ou, X. W.; Xu, Y. J.; Lin, Z. Hierarchical NiCo2O4 hollow nanocages for photoreduction of diluted CO2: Adsorption and active sites engineering. Appl. Catal. B: Environ. 2020, 260, 118208.

    CAS  Google Scholar 

  28. Last, G. V.; Schmick, M. T. A review of major non-power-related carbon dioxide stream compositions. Environ. Earth Sci. 2015, 74, 1189–1198.

    CAS  Google Scholar 

  29. Li, K. K.; Yu, H.; Feron, P.; Tade, M.; Wardhaugh, L. Technical and energy performance of an advanced, aqueous ammonia-based CO2 capture technology for a 500 MW coal-fired power station. Environ. Sci. Technol. 2015, 49, 10243–10252.

    CAS  Google Scholar 

  30. Nakajima, T.; Tamaki, Y.; Ueno, K.; Kato, E.; Nishikawa, T.; Ohkubo, K.; Yamazaki, Y.; Morimoto, T.; Ishitani, O. Photocatalytic reduction of low concentration of CO2. J. Am. Chem. Soc. 2016, 138, 13818–13821.

    CAS  Google Scholar 

  31. Liu, D. C.; Wang, H. J.; Wang, J. W.; Zhong, D. C.; Jiang, L.; Lu, T. B. Highly efficient and selective visible-light driven CO2-to-CO conversion by a Co-based cryptate in H2O/CH3CN solution. Chem. Commun. 2018, 54, 11308–11311.

    CAS  Google Scholar 

  32. Zhang, X. J.; Han, F.; Shi, B.; Farsinezhad, S.; Dechaine, G. P.; Shankar, K. Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angew. Chem., Int. Ed. 2012, 51, 12732–12735.

    CAS  Google Scholar 

  33. Zhou, M.; Wang, S. B.; Yang, P. J.; Huang, C. J.; Wang, X. C. Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 2018, 8, 4928–4936.

    CAS  Google Scholar 

  34. Wu, X. Y.; Li, Y.; Zhang, G. K.; Chen, H.; Li, J.; Wang, K.; Pan, Y.; Zhao, Y.; Sun, Y. F.; Xie, Y. Photocatalytic CO2 conversion of M0.33WO3 directly from the air with high selectivity: Insight into full spectrum-induced reaction mechanism. J. Am. Chem. Soc. 2019, 141, 5267–5274.

    CAS  Google Scholar 

  35. Diercks, C. S.; Liu, Y. Z.; Cordova, K. E.; Yaghi, O. M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 2018, 17, 301–307.

    CAS  Google Scholar 

  36. Lu, M.; Li, Q.; Liu, J.; Zhang, F. M.; Zhang, L.; Wang, J. L.; Kang, Z. H.; Lan, Y. Q. Installing earth-abundant metal active centers to covalent organic frameworks for efficient heterogeneous photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2019, 254, 624–633.

    CAS  Google Scholar 

  37. Yi, L.; Zhao, W. H.; Huang, Y. H.; Wu, X. Y.; Wang, J. L.; Zhang, G. K. Tungsten bronze Cs0.33WO3 nanorods modified by molybdenum for improved photocatalytic CO2 reduction directly from air. Sci. China Mater., in press, DOI: https://doi.org/10.1007/s40843-019-1263-1.

  38. Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

    CAS  Google Scholar 

  39. Du, Y. Q.; Jiang, C.; Song, L.; Gao, B.; Gong, H.; Xia, W.; Sheng, L.; Wang, T.; He, J. P. Regulating surface state of WO3 nanosheets by gamma irradiation for suppressing hydrogen evolution reaction in electrochemical N2 fixation. Nano Res., 2020, 13, 2784–2790.

    CAS  Google Scholar 

  40. Yu, H. J.; Li, J. Y.; Zhang, Y. H.; Yang, S. Q.; Han, K. L.; Dong, F.; Ma, T. Y.; Huang, H. W. Three-in-one oxygen vacancies: Whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction. Angew. Chem., Int. Ed. 2019, 58, 3880–3884.

    CAS  Google Scholar 

  41. Li, J. L.; Zhang, M.; Guan, Z. J.; Li, Q. Y.; He, C. Q.; Yang, J. J. Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl. Catal. B: Environ. 2017, 206, 300–307.

    CAS  Google Scholar 

  42. Geng, Z. G.; Kong, X. D.; Chen, W. W.; Su, H. Y.; Liu, Y.; Cai, F.; Wang, G. X.; Zeng, J. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew. Chem., Int. Ed. 2018, 57, 6054–6059.

    CAS  Google Scholar 

  43. Tong, X. J.; Cao, X.; Han, T.; Cheong, W. C.; Lin, R.; Chen, Z.; Wang, D. S.; Chen, C.; Peng, Q.; Li, Y. D. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Res. 2019, 12, 1625–1630.

    CAS  Google Scholar 

  44. Zhuang, G. X.; Chen, Y. W.; Zhuang, Z. Y.; Yu, Y.; Yu, J. G. Oxygen vacancies in metal oxides: Recent progress towards advanced catalyst design. Sci. China Mater., in press, DOI: https://doi.org/10.1007/s40843-020-1305-6.

  45. Wang, Q. C.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 2019, 12, 1730–1750.

    CAS  Google Scholar 

  46. Yang, X. L.; Wang, S. Y.; Yang, N.; Zhou, W.; Wang, P.; Jiang, K.; Li, S.; Song, H.; Ding, X.; Chen, H. et al. Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4. Appl. Catal. B: Environ. 2019, 259, 118088.

    CAS  Google Scholar 

  47. Kong, X. Y.; Lee, W. Q.; Mohamed, A. R.; Chai, S. P. Effective steering of charge flow through synergistic inducing oxygen vacancy defects and p-n heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: Towards superior photocatalytic CO2 reduction activity. Chem. Eng. J. 2019, 372, 1183–1193.

    CAS  Google Scholar 

  48. Jin, X. L.; Lv, C. D.; Zhou, X.; Ye, L. Q.; Xie, H. Q.; Liu, Y.; Su, H.; Zhang, B.; Chen, G. Oxygen vacancy engineering of Bi24O31C110 for boosted photocatalytic CO2 conversion. ChemSusChem 2019, 12, 2740–2747.

    CAS  Google Scholar 

  49. Hu, L. L.; Liao, Y. H.; Xia, D. H.; Peng, F.; Tan, L.; Hu, S. Y.; Zheng, C. S.; Lu, X. L.; He, C.; Shu, D. Engineered photocatalytic fuel cell with oxygen vacancies-rich rGO/BiO1−xI as photoanode and biomass-derived N-doped carbon as cathode: Promotion of reactive oxygen species production via Fe2+/Fe3+ redox. Chem. Eng. J. 2020, 385, 123824.

    CAS  Google Scholar 

  50. Liu, L. D.; Liu, Q.; Wang, Y.; Huang, J.; Wang, W. J.; Duan, L.; Yang, X.; Yu, X. Y.; Han, X.; Liu, N. Nonradical activation of peroxydisulfate promoted by oxygen vacancy-laden NiO for catalytic phenol oxidative polymerization. Appl. Catal. B: Environ. 2019, 254, 166–173.

    CAS  Google Scholar 

  51. Li, B. J.; Ai, M.; Xu, Z. Mesoporous β-Ni(OH)2: Synthesis and enhanced electrochemical performance. Chem. Commun. 2010, 46, 6267–6269.

    CAS  Google Scholar 

  52. Parveen, N.; Cho, M. H. Self-assembled 3D flower-like nickel hydroxide nanostructures and their supercapacitor applications. Sci. Rep. 2016, 6, 27318.

    CAS  Google Scholar 

  53. Flynn, C. J.; Oh, E. E.; McCullough, S. M.; Call, R. W.; Donley, C. L.; Lopez, R.; Cahoon, J. F. Hierarchically-structured NiO nanoplatelets as mesoscale p-type photocathodes for dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 14177–14184.

    CAS  Google Scholar 

  54. Wang, S. B.; Pan, L.; Song, J. J.; Mi, W. B.; Zou, J. J.; Wang, L.; Zhang, X. W. Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J. Am. Chem. Soc. 2015, 137, 2975–2983.

    CAS  Google Scholar 

  55. Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

    Google Scholar 

  56. Zhu, Y. L.; Zhou, W.; Yu, J.; Chen, Y. B.; Liu, M. L.; Shao, Z. P. Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 2016, 28, 1691–1697.

    CAS  Google Scholar 

  57. Wang, Q.; Puntambekar, A.; Chakrapani, V. Vacancy-induced semiconductor-insulator-metal transitions in nonstoichiometric nickel and tungsten oxides. Nano Lett. 2016, 16, 7067–7077.

    CAS  Google Scholar 

  58. Behm, N.; Brokaw, D.; Overson, C.; Peloquin, D.; Poler, J. C. High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices. J. Mater. Sci. 2013, 48, 1711–1716.

    CAS  Google Scholar 

  59. Wang, Y.; Huang, N. Y.; Shen, J. Q.; Liao, P. Q.; Chen, X. M.; Zhang, J. P. Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction. J. Am. Chem. Soc. 2018, 140, 38–41.

    CAS  Google Scholar 

  60. Xu, H. Q.; Hu, J. H.; Wang, D. K.; Li, Z. H.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron-hole separation via electron trap states. J. Am. Chem. Soc. 2015, 137, 13440–13443.

    CAS  Google Scholar 

  61. Hou, J. G.; Cao, S. Y.; Wu, Y. Z.; Liang, F.; Ye, L.; Lin, Z. S.; Sun, L. C. Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction. Nano Energy 2016, 30, 59–68.

    CAS  Google Scholar 

  62. Tang, S. F.; Yin, X. P.; Wang, G. Y.; Lu, X. L.; Lu, T. B. Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst. Nano Res. 2019, 12, 457–462.

    CAS  Google Scholar 

  63. Xia, Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Liu, G. Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci. China Mater. 2020, 63, 552–565.

    CAS  Google Scholar 

  64. Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651–10657.

    CAS  Google Scholar 

  65. Shan, J. J.; Raziq, F.; Humayun, M.; Zhou, W.; Qu, Y.; Wang, G. F.; Li, Y. D. Improved charge separation and surface activation via boron-doped layered polyhedron SrTiO3 for co-catalyst free photocatalytic CO2 conversion. Appl. Catal. B: Environ. 2017, 219, 10–17.

    CAS  Google Scholar 

  66. Shen, J. X.; Li, Y. Z.; Zhao, H. Y.; Pan, K.; Li, X.; Qu, Y.; Wang, G. F.; Wang, D. S. Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res. 2019, 12, 1931–1936.

    CAS  Google Scholar 

  67. Xia, P. F.; Zhu, B. C.; Yu, J. G.; Cao, S. W.; Jaroniec, M. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A 2017, 5, 3230–3238.

    CAS  Google Scholar 

  68. Wu, H. Z.; Liu, L. M.; Zhao, S. J. The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride. Phys. Chem. Chem. Phys. 2014, 16, 3299–3304.

    CAS  Google Scholar 

  69. Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; Xiong, Y. J. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater. 2018, 30, 1704624.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21777046 and 21836002), the National Key Research and Development Program of China (No. 2019YFA0210400), the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2016ZT06N569), Guangdong Science and Technology Program (No. 2020B121201003), the Science and Technology Project of Guangzhou (No. 201803030002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Deng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Liu, X., Han, B. et al. Boosted photoreduction of diluted CO2 through oxygen vacancy engineering in NiO nanoplatelets. Nano Res. 14, 730–737 (2021). https://doi.org/10.1007/s12274-020-3105-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3105-1

Keywords

Navigation