Skip to main content
Log in

Enhancement of interfacial catalysis in a triphase reactor using oxygen nanocarriers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Multiphase catalysis is used in many industrial processes; however, the reaction rate can be restricted by the low accessibility of gaseous reactants to the catalysts in water, especially for oxygen-dependent biocatalytic reactions. Despite the fact that solubility and diffusion rates of oxygen in many liquids (such as perfluorocarbon) are much higher than in water, multiphase reactions with a second liquid phase are still difficult to conduct, because the interaction efficiency between immiscible phases is extremely low. Herein, we report an efficient triphase biocatalytic system using oil core–silica shell oxygen nanocarriers. Such design offers the biocatalytic system an extremely large water-solid-oil triphase interfacial area and a short path required for oxygen diffusion. Moreover, the silica shell stabilizes the oil nanodroplets in water and prevents their aggregation. Using oxygen-dependent oxidase enzymatic reaction as an example, we demonstrate this efficient biocatalytic system for the oxidation of glucose, choline, lactate, and sucrose by substituting their corresponding oxidase counterparts. A rate enhancement by a factor of 10–30 is observed when the oxygen nanocarriers are introduced into reaction system. This strategy offers the opportunity to enhance the efficiency of other gaseous reactants involved in multiphase catalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Climent, M. J.; Corma, A.; Iborra, S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev. 2011, 111, 1072–1133.

    Article  CAS  Google Scholar 

  2. Zhou, H.; Sheng, X.; Xiao, J.; Ding, Z. Y.; Wang, D. D.; Zhang, X. Q.; Liu, J.; Wu, R. F.; Feng, X. J.; Jiang, L. Increasing the efficiency of photocatalytic reactions via surface microenvironment engineering. J. Am. Chem. Soc. 2020, 142, 2738–2743.

    Article  CAS  Google Scholar 

  3. Huang, J. P.; Cheng, F. Q.; Binks, B. P.; Yang, H. Q. pH-responsive gas-water-solid interface for multiphase catalysis. J. Am. Chem. Soc. 2015, 131, 15015–15025.

    Article  Google Scholar 

  4. Kandemir, T.; Schuster, M. E.; Senyshyn, A.; Behrens, M.; Schlogl, R. The haber-bosch process revisited: On the real structure and stability of “ammonia iron” under working conditions. Angew. Chem., Int. Ed. 2013, 52, 12723–12726.

    Article  CAS  Google Scholar 

  5. Kang, P.; Zhang, S.; Meyer, T. J.; Brookhart, M. Rapid selective electrocatalytic reduction of carbon dioxide to formate by an iridium pincer catalyst immobilized on carbon nanotube electrodes. Angew. Chem., Int. Ed. 2014, 53, 8709–87013.

    Article  CAS  Google Scholar 

  6. Herkendell, K.; Stemmer, A.; Tel-Vered, R. Extending the operational lifetimes of all-direct electron transfer enzymatic biofuel cells by magnetically assembling and exchanging the active biocatalyst layers on stationary electrodes. Nano Res. 2019, 12, 767–775.

    Article  CAS  Google Scholar 

  7. Shi, J. Y.; Clayton, C.; Tian, B. Z. Nano-enabled cellular engineering for bioelectric studies. Nano Res. 2020, 13, 1214–1227.

    Article  Google Scholar 

  8. Yang, X. H.; Li, Z. P.; Kitta, M.; Tsumori, N.; Guo, W. H.; Zhang, Z. T.; Zhang, J. B.; Zou, R. Q.; Xu, Q. Solid-solution alloy nanoclusters of the immiscible gold-rhodium system achieved by a solid ligand-assisted approach for highly efficient catalysis. Nano Res. 2020, 73, 105–111.

    Article  Google Scholar 

  9. Liu, C.; Colon, B. C.; Ziesack, M.; Silver, P. A.; Nocera, D. G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 2016, 352, 1210–1213.

    Article  CAS  Google Scholar 

  10. Shi, R.; Guo, J. H.; Zhang, X. R.; Waterhouse, G. I. N.; Han, Z. J.; Zhao, Y. X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. R. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 2020, 11, 3028.

    Article  CAS  Google Scholar 

  11. Shen, S. H.; Chen, J.; Wang, M.; Sheng, X.; Chen, X. Y.; Feng, X. J.; Mao, S. S. Titanium dioxide nanostructures for photoelectrochemical applications. Prog. Mater. Sci. 2018, 98, 299–385.

    Article  CAS  Google Scholar 

  12. Xiong, X. Y.; Wang, Z. P.; Zhang, Y.; Li, Z. H.; Shi, R.; Zhang, T. R. Wettability controlled photocatalytic reactive oxygen generation and Klebsiella pneumoniae inactivation over triphase systems. Appl. Catal. B 2020, 264, 118518.

    Article  CAS  Google Scholar 

  13. Lei, Y. J.; Sun, R. Z.; Zhang, X. C.; Feng, X. J.; Jiang, L. Oxygen-rich enzyme biosensor based on superhydrophobic electrode. Adv. Mater. 2016, 28, 1477–1481.

    Article  CAS  Google Scholar 

  14. Song, Z. Q.; Xu, C. L.; Sheng, X.; Feng, X. J.; Jiang, L. Utilization of peroxide reduction reaction at air-liquid-solid joint interfaces for reliable sensing system construction. Adv. Mater. 2018, 30, 1701473.

    Article  Google Scholar 

  15. Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 2008, 108, 2482–2505.

    Article  CAS  Google Scholar 

  16. Mi, L.; Yu, J. C.; He, F.; Jiang, L.; Wu, Y. F.; Yang, L. J.; Han, X. F.; Li, Y.; Liu, A. R.; Wei, W. et al. Boosting gas involved reactions at nanochannel reactor with joint gas-solid-liquid interfaces and controlled wettability. J. Am. Chem. Soc. 2017, 139, 10441–10446.

    Article  CAS  Google Scholar 

  17. Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825.

    Article  CAS  Google Scholar 

  18. Cheng, X. Q.; Zhou, J. H.; Chen, J. Y.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. One-step synthesis of thermally stable artificial multienzyme cascade system for efficient enzymatic electrochemical detection. Nano Res. 2019, 12, 3031–3036.

    Article  CAS  Google Scholar 

  19. Junker, B. H.; Hatton, T. A.; Wang, D. I. C. Oxygen transfer enhancement in aqueous/perfluorocarbon fermentation systems: I. Experimental observations. Biotechnol. Bioeng. 1990, 35, 578–585.

    Article  CAS  Google Scholar 

  20. Costa Gomes, M. F.; Deschamps, J.; Menz, D. H. Solubility of dioxygen in seven fluorinated liquids. J. Fluorine Chem. 2004, 125, 1325–1329.

    Article  CAS  Google Scholar 

  21. Riess, J. G. Oxygen carriers (“blood substitutes”)-raison d’etre, chemistry, and some physiology. Chem. Rev. 2001, 101, 2797–2920.

    Article  CAS  Google Scholar 

  22. Song, X. J.; Feng, L. Z.; Liang, C.; Yang, K.; Liu, Z. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 2016, 16, 6145–6153.

    Article  CAS  Google Scholar 

  23. Castro, C. I.; Briceno, J. C. Perfluorocarbon-based oxygen carriers: Review of products and trials. Artif. Organs. 2010, 34, 622–634.

    Google Scholar 

  24. Scott, M. G.; Kucik, D. F.; Goodnough, L. T.; Monk, T. G. Blood substitutes: Evolution and future applications. Clin. Chem. 1997, 43, 1724–1731.

    Article  CAS  Google Scholar 

  25. Westbrook, A. W.; Ren, X.; Moo-Young, M.; Chou, C. P. Application of hydrocarbon and perfluorocarbon oxygen vectors to enhance heterologous production of hyaluronic acid in engineered Bacillus subtilis. Biotechnol. Bioeng. 2018, 115, 1239–1252.

    Article  CAS  Google Scholar 

  26. Taskin, M. B.; Klausen, L. H.; Dong, M. D.; Chen, M. L. Emerging wet electrohydrodynamic approaches for versatile bioactive 3D interfaces. Nano Res. 2020, 13, 315–327.

    Article  Google Scholar 

  27. Zhu, H. F.; Xie, H.; Yang, Y.; Wang, K. Y.; Zhao, F.; Ye, W. X.; Ni, W. H. Mapping hot electron response of individual gold nanocrystals on a TiO2 photoanode. Nano Lett. 2020, 20, 2423–2431.

    Article  CAS  Google Scholar 

  28. Kamin, R. A.; Wilson, G. S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal. Chem. 1980, 52, 1198–1205.

    Article  CAS  Google Scholar 

  29. Ngian, K. F.; Lin, S. H.; Martin, W. R. B. Effect of mass transfer resistance on the lineweaver-burk plots for flocculating microorganisms. Biotechnol. Bioeng. 1977, 19, 1773–1784.

    Article  CAS  Google Scholar 

  30. Hamilton, B. K.; Gardner, C. R.; Colton, C. K. Effect of diffusional limitations on lineweaver–burk plots for immobilized enzymes. AIChE J. 1974, 20, 503–510.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Key R&D Program of China (No. 2019YFA0709200) and the National Natural Science Foundation of China (Nos. 21988102, 51772198, and 21975171).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Jiang or Xinjian Feng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Chen, L., Ding, Z. et al. Enhancement of interfacial catalysis in a triphase reactor using oxygen nanocarriers. Nano Res. 14, 172–176 (2021). https://doi.org/10.1007/s12274-020-3062-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3062-8

Keywords

Navigation