Skip to main content
Log in

One-step synthesis of thermally stable artificial multienzyme cascade system for efficient enzymatic electrochemical detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, metal-organic framework (MOF)-based multienzyme systems integrating different functional natural enzymes and/or nanomaterial-based artificial enzymes are attracting increasing attention due to their high catalytic efficiency and promising application in sensing. Simple and controllable integration of enzymes or nanozymes within MOFs is crucial for achieving efficient cascade catalysis and high stability. Here, we report a facile electrochemical assisted biomimetic mineralization strategy to prepare an artificial multienzyme system for efficient electrochemical detection of biomolecules. By using the GOx@Cu-MOF/copper foam (GOx@Cu-MOF/CF) architecture as a proof of concept, efficient enzyme immobilization and cascade catalysis were achieved by in situ encapsulation of glucose oxidase (GOx) within MOFs layer grown on three-dimensional (3D) porous conducting CF via a facile one-step electrochemical assisted biomimetic mineralization strategy. Due to the bio-electrocatalytic cascade reaction mechanism, this well-designed GOx@Cu-MOF modified electrode exhibited superior catalytic activity and thermal stability for glucose sensing. Notably, the activity of GOx@Cu-MOF/CF still remained at ca. 80% after being incubated at 80 °C. In sharp contrast, the activity of the unprotected electrode was reduced to the original 10% after the same treatment. The design strategy presented here may be useful in fabricating highly stable enzyme@MOF composites applied for efficient photothermal therapy and other platform under high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.; Moore, J. C.; Robins, K. Engineering the third wave of biocatalysis. Nature2012, 485, 185–194.

    CAS  Google Scholar 

  2. Turner, N. J. Directed evolution drives the next generation of biocatalysts. Nat. Chem. Biol.2009, 5, 567–573.

    CAS  Google Scholar 

  3. Trifonov, A.; Tel-Vered, R.; Fadeev, M.; Willner, I. Electrically contacted bienzyme-functionalized mesoporous carbon nanoparticle electrodes: Applications for the development of dual amperometric biosensors and multifuel-driven biofuel cells. Adv. Energy Mater.2015, 5, 1401853.

    Google Scholar 

  4. Geng, P. B.; Zheng, S. S.; Tang, H.; Zhu, R. M.; Zhang, L.; Cao, S.; Xue, H. G.; Pang, H. Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater.2018, 8, 1703259.

    Google Scholar 

  5. Chen, W. H.; Vázquez-González, M.; Zoabi, A.; Abu-Reziq, R.; Willner, I. Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles. Nat. Catal.2018, 1, 689–695.

    CAS  Google Scholar 

  6. Feng, D. W.; Liu, T. F.; Su, J.; Bosch, M.; Wei, Z. W.; Wan, W.; Yuan, D. Q.; Chen, Y. P.; Wang, X.; Wang, K. C. et al. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat. Commun.2015, 6, 5979.

    Google Scholar 

  7. Zhang, C.; Wang, X. R.; Hou, M.; Li, X. Y.; Wu, X. L.; Ge, J. Immobilization on metal-organic framework engenders high sensitivity for enzymatic electrochemical detection. ACS Appl. Mater. Interfaces2017, 9, 13831–13836.

    CAS  Google Scholar 

  8. Wang, Q. Q.; Zhang, X. P.; Huang, L.; Zhang, Z. Q.; Dong, S. J. GOx@ZIF-8 (NiPd) nanoflower: An artificial enzyme system for tandem catalysis. Angew. Chem., Int. Ed.2017, 56, 16082–16085.

    CAS  Google Scholar 

  9. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev.2013, 42, 6060–6093.

    CAS  Google Scholar 

  10. Lian, X. Z.; Chen, Y. P.; Liu, T. F.; Zhou, H. C. Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF. Chem. Sci. 2016, 7, 6969–6973.

    CAS  Google Scholar 

  11. Lian, X. Z.; Erazo-Oliveras, A.; Pellois, J. P.; Zhou, H. C. High efficiency and long-term intracellular activity of an enzymatic nanofactory based on metal-organic frameworks. Nat. Commun.2017, 8, 2075.

    Google Scholar 

  12. Zheng, S. S.; Xue, H. G.; Pang, H. Supercapacitors based on metal coordination materials. Coord. Chem. Rev.2018, 373, 2–21.

    CAS  Google Scholar 

  13. Vijayalakshmi, A.; Karthikeyan, R.; Berchmans, S. Nonenzymatic reduction of hydrogen peroxide produced during the bioelectrocatalysis of glucose oxidase on urchin-like nanofibrillar structures of Cu on Au substrates. J. Phys. Chem. C2010, 114, 22159–22164.

    CAS  Google Scholar 

  14. Lee, S.; Ringstrand, B. S.; Stone, D. A.; Firestone, M. A. Electrochemical activity of glucose oxidase on a poly(ionic liquid)-Au nanoparticle composite. ACS Appl. Mater. Interfaces2012, 4, 2311–2317.

    CAS  Google Scholar 

  15. Ma, W. J.; Jiang, Q.; Yu, P.; Yang, L. F.; Mao, L. Q. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Anal. Chem.2013, 85, 7550–7757.

    CAS  Google Scholar 

  16. Zhang, Y. F.; Ge, J.; Liu, Z. Enhanced activity of immobilized or chemically modified enzymes. ACS Catal.2015, 5, 4503–4513.

    Google Scholar 

  17. Doonan, C.; Ricco, R.; Liang, K.; Bradshaw, D.; Falcaro, P. Metal-organic frameworks at the biointerface: Synthetic strategies and applications. Acc. Chem. Res.2017, 50, 1423–1432.

    CAS  Google Scholar 

  18. Lian, X. Z.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J. L.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H. C. Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev.2017, 46, 3386–3401.

    CAS  Google Scholar 

  19. Mehta, J.; Bhardwaj, N.; Bhardwaj, S. K.; Kim, K. H.; Deep, A. Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates. Coord. Chem. Rev.2016, 322, 30–40.

    CAS  Google Scholar 

  20. Gkaniatsou, E.; Sicard, C.; Ricoux, R.; Benahmed, L.; Bourdreux, F.; Zhang, Q.; Serre, C.; Mahy, J. P.; Steunou, N. Enzyme encapsulation in mesoporous metal-organic frameworks for selective biodegradation of harmful dye molecules. Angew. Chem., Int. Ed.2018, 57, 16141–16146.

    CAS  Google Scholar 

  21. Hanefeld, U.; Gardossi, L.; Magner, E. Understanding enzyme immobilisation. Chem. Soc. Rev.2009, 38, 453–468.

    CAS  Google Scholar 

  22. Kempahanumakkagari, S.; Kumar, V.; Samaddar, P.; Kumar, P.; Ramakrishnappa, T.; Kim, K. H. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform. Biotechnol. Adv.2018, 36, 467–481.

    CAS  Google Scholar 

  23. Gkaniatsou, E.; Sicard, C.; Ricoux, R.; Mahy, J. P.; Steunou, N.; Serre, C. Metal-organic frameworks: A novel host platform for enzymatic catalysis and detection. Mater. Horiz.2017, 4, 55–63.

    CAS  Google Scholar 

  24. Chen, L. N.; Zhan, W. W.; Fang, H. H.; Cao, Z. M.; Yuan, C. F.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. Selective catalytic performances of noble metal nanoparticle@MOF composites: The concomitant effect of aperture size and structural flexibility of MOF matrices. Chem.—Eur. J.2017, 23, 11397–33403.

    CAS  Google Scholar 

  25. Chen, L. N.; Zhang, X. B.; Zhou, J. H.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. A Nano-reactor based on PtNi@metal-organic framework composites loaded with polyoxometalates for hydrogenation-esterification tandem reactions. Nanoscale2019, 11, 3292–3299.

    CAS  Google Scholar 

  26. Xu, W. Q.; Jiao, L.; Yan, H. Y.; Wu, Y.; Chen, L. J.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces2019, 11, 22096–22101.

    CAS  Google Scholar 

  27. Chen, G. S.; Huang, S. M.; Kou, X. X.; Wei, S. B.; Huang, S. Y.; Jiang, S. Q.; Shen, J.; Zhu, F.; Ouyang, G. F. A convenient and versatile aminoacid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal-organic frameworks. Angew. Chem., Int. Ed.2019, 58, 1463–1467.

    CAS  Google Scholar 

  28. Cowan, D. A.; Fernandez-Lafuente, R. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb. Technol.2011, 49, 326–346.

    CAS  Google Scholar 

  29. Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun.2015, 6, 7240.

    CAS  Google Scholar 

  30. Li, P.; Modica, J. A.; Howarth, A. J.; Vargas L, E.; Moghadam, P. Z.; Snurr, R. Q.; Mrksich, M.; Hupp, J. T.; Farha, O. K. Toward design rules for enzyme immobilization in hierarchical mesoporous metal-organic frameworks. Chem2016, 1, 154–169.

    CAS  Google Scholar 

  31. Chen, L. N.; Wang, T.; Xue, Y. K.; Zhou, X.; Zhou, J. H.; Cheng, X. Q.; Xie, Z. X.; Kuang, Q.; Zheng, L. S. Rationally armoring PtCu alloy with metal-organic frameworks as highly selective nonenzyme electrochemical sensor. Adv. Mater. Interfaces2018, 5, 1801168.

    Google Scholar 

  32. Mohammad, M.; Razmjou, A.; Liang, K.; Asadnia, M.; Chen, V. Metal-organic-framework-based enzymatic microfluidic biosensor via surface patterning and biomineralization. ACS Appl. Mater. Interfaces2019, 11, 1807–1820.

    CAS  Google Scholar 

  33. Qiu, Q. M.; Chen, H. Y.; Wang, Y. X.; Ying, Y. B. Recent advances in the rational synthesis and sensing applications of metal-organic framework biocomposites. Coord. Chem. Rev.2019, 387, 60–78.

    CAS  Google Scholar 

  34. Zhang, Y. F.; Hess, H. Toward rational design of high-efficiency enzyme cascades. ACS Catal.2017, 7, 6018–6027.

    CAS  Google Scholar 

  35. Wang, M.; Mohanty, S. K.; Mahendra, S. Nanomaterial-supported enzymes for water purification and monitoring in point-of-use water supply systems. Acc. Chem. Res.2019, 52, 876–885.

    CAS  Google Scholar 

  36. Campagnol, N.; Stassen, I.; Binnemans, K.; De Vos, D. E.; Fransaer, J. Metal-organic framework deposition on dealloyed substrates. J. Mater. Chem. A2015, 3, 19747–19753.

    CAS  Google Scholar 

  37. Li, W. J.; Tu, M.; Cao, R.; Fischer, R. A. Metal-organic framework thin films: Electrochemical fabrication techniques and corresponding applications &; perspectives. J. Mater. Chem. A2016, 4, 12356–12369.

    CAS  Google Scholar 

  38. Campagnol, N.; Van Assche, T. R. C.; Li, M. Y.; Stappers, L.; Dincă, M.; Denayer, J. F. M.; Binnemans, K.; De Vos, D. E.; Fransaer, J. On the electrochemical deposition of metal-organic frameworks. J. Mater. Chem. A2016, 4, 3914–3925.

    CAS  Google Scholar 

  39. Li, Z. X.; Xia, H.; Li, S. M.; Pang, J. F.; Zhu, W.; Jiang Y. B. In situ hybridization of enzymes and their metal-organic framework analogues with enhanced activity and stability by biomimetic mineralisation. Nanoscale2017, 9, 15298–15302.

    CAS  Google Scholar 

  40. Du, Y. J.; Gao, J.; Liu, H. J.; Zhou, L. Y.; Ma, L.; He, Y.; Huang, Z. H.; Jiang, Y. J. Enzyme@silica nanoflower@metal-organic framework hybrids: A novel type of integrated nanobiocatalysts with improved stability. Nano Res.2018, 11, 4380–4389.

    CAS  Google Scholar 

  41. Li, Z. X.; Ding, Y.; Li, S. M.; Jiang, Y. B.; Liu Z.; Ge J. Highly active, stable and self-antimicrobial enzyme catalysts prepared by biomimetic mineralization of copper hydroxysulfate. Nanoscale2016, 8, 17440–17445.

    CAS  Google Scholar 

  42. Soganci, T.; Baygu, Y.; Kabay, N.; Gök, Y.; Ak, M. Comparative investigation of peripheral and nonperipheral zinc phthalocyanine-based polycarbazoles in terms of optical, electrical, and sensing properties. ACS Appl. Mater. Interfaces2018, 10, 21654–21665.

    CAS  Google Scholar 

  43. Wang, H. W.; Lang, Q. L.; Li, L.; Liang, B.; Tang, X. J.; Kong, L. R.; Mascini, M.; Liu, A. H. Yeast surface displaying glucose oxidase as whole-cell biocatalyst: Construction, characterization, and its electrochemical glucose sensing application. Anal. Chem.2013, 85, 6107–6112.

    CAS  Google Scholar 

  44. Yang, Y.; Zhang, R. Q.; Zhou, B. N.; Song, J. Y.; Su, P.; Yang, Y. High activity and convenient ratio control: DNA-directed coimmobilization of multiple enzymes on multifunctionalized magnetic nanoparticles. ACS Appl. Mater. Interfaces2017, 9, 37254–37263.

    CAS  Google Scholar 

  45. Zhao, M. G.; Li, Z. L.; Han, Z. Q.; Wang, K.; Zhou, Y.; Huang, J. Y.; Ye, Z. Z. Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor. Biosens. Bioelectron.2013, 49, 318–322.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2017YFA0206500 and 2017YFA0206801), the National Basic Research Program of China (No. 2015CB932301), and the National Natural Science Foundation of China (Nos. 21671163, 21721001, and J1310024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Kuang.

Electronic Supplementary Material

12274_2019_2548_MOESM1_ESM.pdf

One-step synthesis of thermally stable artificial multienzyme cascade system for efficient enzymatic electrochemical detection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Zhou, J., Chen, J. et al. One-step synthesis of thermally stable artificial multienzyme cascade system for efficient enzymatic electrochemical detection. Nano Res. 12, 3031–3036 (2019). https://doi.org/10.1007/s12274-019-2548-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2548-8

Keywords

Navigation