Skip to main content
Log in

Solid-solution alloy nanoclusters of the immiscible gold-rhodium system achieved by a solid ligand-assisted approach for highly efficient catalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Striking effects are expected in solid-solution alloying, which offers enormous possibilities for various applications, especially in industrial catalysis. However, phase diagrams have revealed that a wide range of metallic elements are immiscible with each other even above their melting points. Achieving such unknown alloying between different immiscible metallic elements is highly desirable but challenging. Here, for the first time, by using an innovative solid ligand-assisted approach, we achieve the solid-solution alloying between the bulk-immiscible Au and Rh in plenty of clean, ultrafine (∼ 1.6 nm) and highly dispersed nanoclusters. The solid-solution alloying of immiscible Au and Rh significantly enhances their catalytic performance toward the hydrogen evolution from formic acid in contrast to the monometallic Au and Rh nanoclusters. Moreover, the resultant binary solid-solution nanoclusters are stable without any segregation during catalytic reactions. The approach demonstrated here for homogeneously mixing the immiscible metals at the atomic scale will benefit the creation of advanced alloys and their catalytic applications in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buchwalter, P.; Rosé, J.; Braunstein, P. Multimetallic catalysis based on heterometallic complexes and clusters. Chem. Rev.2015, 115, 28–126.

    CAS  Google Scholar 

  2. Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater.2016, 28, 3423–3452.

    CAS  Google Scholar 

  3. Fan, Z. X.; Zhang, H. Template synthesis of noble metal nanocrystals with unusual crystal structures and their catalytic applications. Acc. Chem. Res.2016, 49, 2841–2850.

    CAS  Google Scholar 

  4. Zhao, X. J.; Dai, L.; Qin, Q.; Pei, F.; Hu, C. Y.; Zheng, N. F. Self-supported 3D PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol. Small2017, 13, 1602970.

    Google Scholar 

  5. Xu, L.; Liang, H. W.; Yang, Y.; Yu, S. H. Stability and reactivity: Positive and negative aspects for nanoparticle processing. Chem. Rev.2018, 118, 3209–3250.

    CAS  Google Scholar 

  6. Yang, X. C.; Xu, Q. Gold-containing metal nanoparticles for catalytic hydrogen generation from liquid chemical hydrides. Chin. J. Catal.2016, 37, 1594–1599.

    CAS  Google Scholar 

  7. Kumar, A.; Yang, X. C.; Xu, Q. Ultrafine bimetallic Pt-Ni nanoparticles immobilized on 3-dimensional N-doped graphene networks: A highly efficient catalyst for dehydrogenation of hydrous hydrazine. J. Mater. Chem. A2019, 7, 112–115.

    CAS  Google Scholar 

  8. Yang, X. C.; Pachfule, P.; Chen, Y.; Tsumori, N.; Xu, Q. Highly efficient hydrogen generation from formic acid using a reduced graphene oxide-supported AuPd nanoparticle catalyst. Chem. Commun.2016, 52, 4171–4174.

    CAS  Google Scholar 

  9. Christensen, A.; Stoltze, P.; Norskov, J. K. Size dependence of phase separation in small bimetallic clusters. J. Phys.: Condens. Matter1995, 7, 1047–1057.

    CAS  Google Scholar 

  10. Essinger-Hileman, E. R.; DeCicco, D.; Bondi, J. F.; Schaak, R. E. Aqueous room-temperature synthesis of Au-Rh, Au-Pt, Pt-Rh, and Pd-Rh alloy nanoparticles: Fully tunable compositions within the miscibility gaps. J. Mater. Chem.2011, 21, 11599–11604.

    CAS  Google Scholar 

  11. García, S.; Zhang, L.; Piburn, G. W.; Henkelman, G.; Humphrey, S. M. Microwave synthesis of classically immiscible rhodium-silver and rhodium-gold alloy nanoparticles: Highly active hydrogenation catalysts. ACS Nano2014, 8, 11512–11521.

    Google Scholar 

  12. Chen, L. Y.; Chen, X. D.; Liu, H. L.; Li, Y. W. Encapsulation of mono- or bimetal nanoparticles inside metal-organic frameworks via in situ incorporation of metal precursors. Small2015, 11, 2642–2648.

    CAS  Google Scholar 

  13. Zhang, Q.; Kusada, K.; Wu, D. S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Selective control of fcc and hcp crystal structures in Au-Ru solid-solution alloy nanoparticles. Nat. Commun.2018, 9, 510.

    Google Scholar 

  14. Liu, H. L.; Chang, L. N.; Bai, C. H.; Chen, L. Y.; Luque, R.; Li, Y. W. Controllable encapsulation of “clean” metal clusters within MOFs through kinetic modulation: Towards advanced heterogeneous nanocatalysts. Angew. Chem., Int. Ed.2016, 55, 5019–5023.

    CAS  Google Scholar 

  15. Liu, B.; Yao, H. Q.; Song, W. Q.; Jin, L.; Mosa, I. M.; Rusling, J. F.; Suib, S. L.; He, J. Ligand-free noble metal nanocluster catalysts on carbon supports via “soft” nitriding. J. Am. Chem. Soc.2016, 138, 4718–4721.

    CAS  Google Scholar 

  16. Gao, W. B.; Wang, P. K.; Guo, J. P.; Chang, F.; He, T.; Wang, Q. R.; Wu, G. T.; Chen, P. Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: A case study of cobalt. ACS Catal.2017, 7, 3654–3661.

    CAS  Google Scholar 

  17. Yang, X. C.; Sun, J. K.; Kitta, M.; Pang, H.; Xu, Q. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nat. Catal.2018, 1, 214–220.

    CAS  Google Scholar 

  18. Liu, G. Y.; Sheng, Y.; Ager, J. W.; Kraft, M.; Xu, R. Research advances towards large-scale solar hydrogen production from water. EnergyChem2019, 1, 100014.

    Google Scholar 

  19. Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun.2014, 5, 3783.

    Google Scholar 

  20. Kohl, M.; Borrmann, F.; Althues, H.; Kaskel, S. Hard carbon anodes and novel electrolytes for long-cycle-life room temperature sodium-sulfur full cell batteries. Adv. Energy Mater.2016, 6, 1502185.

    Google Scholar 

  21. Hou, Y.; Qiu, M.; Zhang, T.; Ma, J.; Liu, S. H.; Zhuang, X. D.; Yuan, C.; Feng, X. L. Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Adv. Mater.2017, 29, 1604480.

    Google Scholar 

  22. Pachfule, P.; Yang, X. C.; Zhu, Q. L.; Tsumori, N.; Uchida, T.; Xu, Q. From Ru nanoparticle-encapsulated metal-organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon. J. Mater. Chem. A2017, 5, 4835–4841.

    CAS  Google Scholar 

  23. He, L.; Weniger, F.; Neumann, H.; Beller, M. Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: Catalysis beyond electrochemistry. Angew. Chem., Int. Ed.2016, 55, 12582–12594.

    CAS  Google Scholar 

  24. Zhong, S.; Kitta, M.; Xu, Q. Hierarchically porous carbons derived from metal-organic framework/chitosan composites for high-performance supercapacitors. Chem. Asian J.2019, 14, 3583–3589.

    CAS  Google Scholar 

  25. Lu, L. L.; Wu, B. Y.; Shi, W.; Chen, P. Metal-organic framework-derived heterojunctions as nanocatalysts for photocatalytic hydrogen production. Inorg. Chem. Front., in press, DOI: https://doi.org/10.1039/C9QI00964G.

    CAS  Google Scholar 

  26. Huang, J. H.; Akita, T.; Faye, J.; Fujitani, T.; Takei, T.; Haruta, M. Propene epoxidation with dioxygen catalyzed by gold clusters. Angew. Chem., Int. Ed.2009, 48, 7862–7866.

    CAS  Google Scholar 

  27. Zhong, R. Y.; Sun, K. Q.; Hong, Y. C.; Xu, B. Q. Impacts of organic stabilizers on catalysis of Au nanoparticles from colloidal preparation. ACS Catal.2014, 4, 3982–3993.

    CAS  Google Scholar 

  28. Sun, J. K.; Zhan, W. W.; Akita, T.; Xu, Q. Toward homogenization of heterogeneous metal nanoparticle catalysts with enhanced catalytic performance: Soluble porous organic cage as a stabilizer and homogenizer. J. Am. Chem. Soc.2015, 137, 7063–7066.

    CAS  Google Scholar 

  29. Okamoto, H.; Massalski, T. B. The Au-Rh (gold-rhodium) system. Bull. Alloy Phase Diagrams1984, 5, 384–387.

    CAS  Google Scholar 

  30. Richardson, M. J.; Johnston, J. H. Sorption and binding of nano-crystalline gold by Merino wool fibres—An XPS study. J. Colloid Interface Sci.2007, 310, 425–430.

    CAS  Google Scholar 

  31. Arrigo, R.; Hävecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGregor, J.; Parrott, E. P. J.; Zeitler, J. A.; Gladden, L. F.; Knop-Gericke, A. et al. Tuning the acid/base properties of nanocarbons by functionalization via amination. J. Am. Chem. Soc.2010, 132, 9616–9630.

    CAS  Google Scholar 

  32. Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science2017, 358, 1427–1430.

    CAS  Google Scholar 

  33. Moret, S.; Dyson, P. J.; Laurenczy, G. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nat. Commun.2014, 5, 4017.

    CAS  Google Scholar 

  34. Wang, W. H.; Ertem, M. Z.; Xu, S. A.; Onishi, N.; Manaka, Y.; Suna, Y.; Kambayashi, H.; Muckerman, J. T.; Fujita, E.; Himeda, Y. Highly robust hydrogen generation by bioinspired Ir complexes for dehydrogenation of formic acid in water: Experimental and theoretical mechanistic investigations at different pH. ACS Catal.2015, 5, 5496–5504.

    CAS  Google Scholar 

  35. Mellmann, D.; Sponholz, P.; Junge, H.; Beller, M. Formic acid as a hydrogen storage material-development of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev.2016, 45, 3854–3988.

    Google Scholar 

  36. Sun, Q. M.; Wang, N.; Bing, Q. M.; Si, R.; Liu, J. Y.; Bai, R. S.; Zhang, P.; Jia, M. J.; Yu, J. H. Subnanometric hybrid Pd-M(OH)2, M = Ni, Co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation. Chem2017, 3, 477–493.

    CAS  Google Scholar 

  37. Li, Z. P.; Xu, Q. Metal-nanoparticle-catalyzed hydrogen generation from formic acid. Acc. Chem. Res.2017, 50, 1449–1458.

    CAS  Google Scholar 

  38. Sordakis, K.; Tang, C. H.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chem. Rev.2018, 118, 372–433.

    CAS  Google Scholar 

  39. Mori, K.; Sano, T.; Kobayashi, H.; Yamashita, H. Surface engineering of a supported PdAg catalyst for hydrogenation of CO2 to formic acid: Elucidating the active Pd atoms in alloy nanoparticles. J. Am. Chem. Soc.2018, 140, 8902–8909.

    CAS  Google Scholar 

  40. Hong, C. B.; Zhu, D. J.; Ma, D. D.; Wu, X. T.; Zhu, Q. L. An effective amino acid-assisted growth of ultrafine palladium nanocatalysts toward superior synergistic catalysis for hydrogen generation from formic acid. Inorg. Chem. Front.2019, 6, 975–981.

    CAS  Google Scholar 

  41. Li, S. J.; Zhou, Y. T.; Kang, X.; Liu, D. X.; Gu, L.; Zhang, Q. H.; Yan, J. M.; Jiang, Q. A simple and effective principle for a rational design of heterogeneous catalysts for dehydrogenation of formic acid. Adv. Mater.2019, 31, 1806781.

    Google Scholar 

  42. Madon, R. J.; Boudart, M. Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions. Ind. Eng. Chem. Fundamen.1982, 21, 438–447.

    CAS  Google Scholar 

  43. Singh, U. K.; Vannice, M. A. Kinetic and thermodynamic analysis of liquid-phase benzene hydrogenation. AIChE J.1999, 45, 1059–1071.

    CAS  Google Scholar 

  44. Schaber, P. M.; Colson, J; Higgins, S.; Thielen, D.; Anspach, B.; Brauer, J. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta2004, 424, 131–142.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank METI, AIST and Kobe University for financial support, and Dr. Takeyuki Uchida for TEM measurements. X. C. Y. is grateful to the MEXT and CSC for a PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruqiang Zou or Qiang Xu.

Electronic Supplementary Material

12274_2019_2579_MOESM1_ESM.pdf

Solid-solution alloy nanoclusters of the immiscible gold-rhodium system achieved by a solid ligand-assisted approach for highly efficient catalysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Li, Z., Kitta, M. et al. Solid-solution alloy nanoclusters of the immiscible gold-rhodium system achieved by a solid ligand-assisted approach for highly efficient catalysis. Nano Res. 13, 105–111 (2020). https://doi.org/10.1007/s12274-019-2579-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2579-1

Keywords

Navigation