Skip to main content
Log in

Improving the cycle stability of FeCl3-graphite intercalation compounds by polar Fe2O3 trapping in lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

FeCl3-intercalated graphite intercalation compounds (GICs) with high reversible capacity and high volumetric energy density are attractive anode material alternatives of commercial graphite. However, the rapid capacity decay, which was induced by chloride dissolution and shuttling issues, hindered their practical application. To address this problem, here, we introduce flake-like Fe2O3 species with inherently polar surface on the edge of FeCl3-intercalated GICs through microwave-assisted transformation of a fraction of FeCl3 component. Theoretical simulations and physical/electrochemical studies demonstrate that the introduced Fe2O3 component can afford sufficient polar active sites for chemically bonding the soluble FeCl3 and LiCl species based on the polar—polar interaction mechanism, further inhibiting the outward diffusion of the chlorides and immobilizing them within the GIC material. In a lithium ion cell, the FeCl3-intercalated GIC with a suitable Fe2O3 content shows remarkably improved cycling stability with a high reversible capacity of 1,041 mAh·g−1 at a current density of 200 mA·g−1. Capacity retention of 91% is achieved at a high current density of 1,000 mA·g−1 over 300 cycles. This work opens up the new prospect for immobilizing chlorides by introducing inorganic species in GIC for long-cycle electrochemical batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough, J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053–1061.

    Article  Google Scholar 

  2. Goodenough, J. B. Energy storage materials: A perspective. Energy Storage Mater. 2015, 1, 158–161.

    Article  Google Scholar 

  3. Gong, Y. J.; Yang, S. B.; Liu, Z.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater. 2013, 25, 3979–3984.

    Article  Google Scholar 

  4. Kong, D. B.; Li, X. L.; Zhang, Y. B.; Hai, X.; Wang, B.; Qiu, X. Y.; Song, Q.; Yang, Q. H.; Zhi, L. J. Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries. Energy Environ. Sci. 2016, 9, 906–911.

    Article  Google Scholar 

  5. Zhang, C.; Lv, W.; Tao, Y.; Yang, Q. H. Towards superior volumetric performance: Design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 2015, 8, 1390–1403.

    Article  Google Scholar 

  6. Li, Z. J.; Kong, D. B.; Zhou, G. M.; Wu, S. D.; Lv, W.; Luo, C.; Shao, J. J.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twin-functional graphene oxide: Compacting with Fe2O3 into a high volumetric capacity anode for lithium ion battery. Energy Storage Mater. 2017, 6, 98–103.

    Article  Google Scholar 

  7. Xu, Y.; Tao, Y.; Li, H.; Zhang, C.; Liu, D. H.; Qi, C. S.; Luo, J. Y.; Kang, F. Y.; Yang, Q. H. Dual electronic-ionic conductivity of pseudo-capacitive filler enables high volumetric capacitance from dense graphene micro-particles. Nano Energy 2017, 36, 349–355.

    Article  Google Scholar 

  8. Han, J. W.; Kong, D. B.; Lv, W.; Tang, D. M.; Han, D. L.; Zhang, C.; Liu, D. H.; Xiao, Z. C.; Zhang, X. H.; Xiao, J. et al. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage. Nat. Commun. 2018, 9, 402.

    Article  Google Scholar 

  9. Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156–2167.

    Article  Google Scholar 

  10. Yin, H.; Yu, X. X.; Yu, Y. W.; Cao, M. L.; Zhao, H.; Li, C.; Zhu, M. Q. Tellurium nanotubes grown on carbon fiber cloth as cathode for flexible all-solid-state lithium-tellurium batteries. Electrochim. Acta 2018, 282, 870–876.

    Article  Google Scholar 

  11. Lin, W. Z.; Lian, Y. P.; Zeng, G.; Chen, Y. Y.; Wen, Z. H.; Yang, H. H. A fast synthetic strategy for high-quality atomically thin antimonene with ultrahigh sonication power. Nano Res. 2018, 11, 5968–5977.

    Article  Google Scholar 

  12. Yin, H.; Cao, M. L.; Yu, X. X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Q. Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater. Chem. Front. 2017, 1, 1615–1621.

    Article  Google Scholar 

  13. Yin, H.; Yu, X. X.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Zhu, M. Q. Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J. Alloys Compd. 2017, 706, 97–102.

    Article  Google Scholar 

  14. Luo, J. S.; Xia, X. H.; Luo, Y. S.; Guan, C.; Liu, J. L.; Qi, X. Y.; Ng, C. F.; Yu, T.; Zhang, H.; Fan, H. J. Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 2013, 3, 737–743.

    Article  Google Scholar 

  15. Yin, H.; Liu, Y.; Yu, N.; Qu, H. Q.; Liu, Z. T.; Jiang, R. Z.; Li, C.; Zhu, M. Q. Graphene-like MoS2 nanosheets on carbon fabrics as high-performance binder-free electrodes for supercapacitors and Li-ion batteries. ACS Omega 2018, 3, 17466–17473.

    Article  Google Scholar 

  16. Sun, M.; Liu, H. J.; Qu, J. H.; Li, J. H. Earth-rich transition metal phosphide for energy conversion and storage. Adv. Energy Mater. 2016, 6, 1600087.

    Article  Google Scholar 

  17. Yin, H.; Qu, H. Q.; Liu, Z. T.; Jiang, R. Z.; Li, C.; Zhu, M. Q. Long cycle life and high rate capability of three dimensional CoSe2 grain-attached carbon nanofibers for flexible sodium-ion batteries. Nano Energy 2019, 58, 715–723.

    Article  Google Scholar 

  18. Zhang, C. Z.; Ma, J. M.; Han, F.; Liu, H. B.; Zhang, F. Q.; Fan, C. L.; Liu, J. S.; Li, X. K. Strong anchoring effect of ferric chloride-graphite intercalation compounds (FeCl3-GICs) with tailored epoxy groups for high-capacity and stable lithium storage. J. Mater. Chem. A 2018, 6, 17982–17993.

    Article  Google Scholar 

  19. Wu, F. X.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 2017, 10, 435–459.

    Article  Google Scholar 

  20. Peng, F. X.; Meng, F. B.; Guo, Y. F.; Wang, H. G.; Huang, F.; Zhou, Z. W. Intercalating hybrids of sandwich-like Fe3O4—graphite: Synthesis and their synergistic enhancement of microwave absorption. ACS Sustainable Chem. Eng. 2018, 6, 16744–16753.

    Article  Google Scholar 

  21. Qi, X.; Qu, J.; Zhang, H. B.; Yang, D. Z.; Yu, Y. H.; Chi, C.; Yu, Z. Z. FeCl3 intercalated few-layer graphene for high lithium-ion storage performance. J. Mater. Chem. A 2015, 3, 15498–15504.

    Article  Google Scholar 

  22. Luo, L.; Chung, S. H.; Asl, H. Y.; Manthiram, A. Long-life lithium-sulfur batteries with a bifunctional cathode substrate configured with boron carbide nanowires. Adv. Mater. 2018, 30, e1804149.

    Article  Google Scholar 

  23. Wang, F.; Yi, J.; Wang, Y. G., Wang, C. X.; Wang, J. Q.; Xia, Y. Y. Graphite intercalation compounds (GICs): A new type of promising anode material for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300600.

    Article  Google Scholar 

  24. Wang, L. L.; Zhu, Y. C.; Guo, C.; Zhu, X. B.; Liang, J. W.; Qian, Y. T. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries. ChemSusChem 2014, 7, 87–91.

    Article  Google Scholar 

  25. Wang, L. L.; Guo, C.; Zhu, Y. C.; Zhou, J. B.; Fan, L.; Qian, Y. T. A FeCl2-graphite sandwich composite with Cl doping in graphite layers: A new anode material for high-performance Li-ion batteries. Nanoscale 2014, 6, 14174–14179.

    Article  Google Scholar 

  26. Chen, J.; Fan, X. L.; Ji, X.; Gao, T.; Hou, S.; Zhou, X. Q.; Wang, L. N.; Wang, F.; Yang, C. Y.; Chen, L. et al. Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries. Energy Environ. Sci. 2018, 11, 1218–1225.

    Article  Google Scholar 

  27. Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

    Article  Google Scholar 

  28. Wang, X. W.; Yang, C. H.; Xiong, X. H.; Chen, G. L.; Huang, M. Z.; Wang, J. H.; Liu, Y.; Liu, M. L.; Huang, K. A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Mater. 2019, 16, 344–353.

    Article  Google Scholar 

  29. Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Cheng, H. M.; Li, F. More reliable lithium-sulfur batteries: Status, solutions and prospects. Adv. Mater. 2017, 29, 1606823.

    Article  Google Scholar 

  30. Zhang, J.; Huang, H.; Bae, J.; Chung, S. H.; Zhang, W. K.; Manthiram, A.; Yu, G. H. Nanostructured host materials for trapping sulfur in rechargeable Li-S batteries: Structure design and interfacial chemistry. Small Methods 2018, 2, 1700279.

    Article  Google Scholar 

  31. Wei Seh, Z.; Li, W. Y.; Cha, J. J.; Zheng, G Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

    Article  Google Scholar 

  32. Zhang, J. T.; Li, Z.; Chen, Y.; Gao, S. Y.; Lou, X. W. Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 10944–10948.

    Article  Google Scholar 

  33. Kong, W. B.; Yan, L. J.; Luo, Y. F.; Wang, D. T.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li-S batteries. Adv. Funct. Mater. 2017, 27, 1606663.

    Article  Google Scholar 

  34. Chen, X.; Peng, H. J.; Zhang, R.; Hou, T. Z.; Huang, J. Q.; Li, B.; Zhang, Q. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides? ACS Energy Lett. 2017, 2, 795–801.

    Article  Google Scholar 

  35. Ye, C.; Zhang, L.; Guo, C. X.; Li, D. D.; Vasileff, A.; Wang, H. H.; Qiao, S. Z. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1702524.

    Article  Google Scholar 

  36. Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

    Article  Google Scholar 

  37. Dong, Y. F.; Zheng, S. H.; Qin, J. Q.; Zhao, X. J.; Shi, H. D.; Wang, X. H.; Chen, J.; Wu, Z. S. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano 2018, 12, 2381–2388.

    Article  Google Scholar 

  38. Tang, H.; Li, W. L.; Pan, L. M.; Cullen, C. P.; Liu, Y.; Pakdel, A.; Long, D. H.; Yang, J.; McEvoy, N.; Duesberg, G. S. et al. In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 2018, 5, 1800502.

    Article  Google Scholar 

  39. Zhang, Q. F.; Wang, Y. P.; Seh, Z. W.; Fu, Z. H.; Zhang, R. F.; Cui, Y. Understanding the anchoring effect of two-dimensional layered materials for lithium—sulfur batteries. Nano Lett. 2015, 15, 3780–3786.

    Article  Google Scholar 

  40. Zhang, H. Y.; Shen, W. C.; Wang, Z. D.; Zhang, F. Formation of iron chloride-graphite intercalation compounds in propylene carbonate by electrolysis. Carbon 1997, 35, 285–290.

    Article  Google Scholar 

  41. Zhan, D.; Sun, L.; Ni, Z. H.; Liu, L.; Fan, X. F.; Wang, Y. Y.; Yu, T.; Lam, Y. M.; Huang, W.; Shen, Z. X. FeCl3-based few-layer graphene intercalation compounds: Single linear dispersion electronic band structure and strong charge transfer doping. Adv. Funct. Mater. 2010, 20, 3504–3509.

    Article  Google Scholar 

  42. Zhao, W. J.; Tan, P. H.; Liu, J.; Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. J. Am. Chem. Soc. 2011, 133, 5941–5946.

    Article  Google Scholar 

  43. Li, D. P.; Zhu, M.; Chen, L. N.; Chen, L.; Zhai, W.; Ai, Q.; Hou, G. M.; Sun, Q.; Liu, Y.; Liang, Z. et al. Sandwich-like FeCl3@C as high-performance anode materials for potassium-ion batteries. Adv. Mater. Interfaces 2018, 5, 1800606.

    Article  Google Scholar 

  44. Li, H.; Tao, Y.; Zhang, C.; Liu, D. H.; Luo, J. Y.; Fan, W. C.; Xu, Y.; Li, Y. Z.; You, C. H.; Pan, Z. Z. et al. Dense graphene monolith for high volumetric energy density Li-S batteries. Adv. Energy Mater. 2018, 8, 1703438.

    Article  Google Scholar 

  45. Zhang, J. X.; Zhao, X.; Yao, M. Y.; Tan, W. J.; Dong, J.; Zhang, Q. H. Microwave-assisted exfoliation strategy to boost the energy storage capability of carbon fibers for supercapacitors. J. Mater. Sci. 2018, 53, 11050–11061.

    Article  Google Scholar 

  46. Zhao, W. X.; Ci, S. Q.; Hu, X.; Chen, J. X.; Wen, Z. H. Highly dispersed ultrasmall NiS2 nanoparticles in porous carbon nanofiber anodes for sodium ion batteries. Nanoscale 2019, 11, 4688–4695.

    Article  Google Scholar 

  47. Luo, Y. S.; Luo, J. S.; Jiang, J.; Zhou, W. W.; Yang, H. P.; Qi, X. Y.; Zhang, H.; Fan, H. J.; Yu, D. Y. W.; Li, C. M. et al. Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 2012, 5, 6559–6566.

    Article  Google Scholar 

  48. Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.

    Article  Google Scholar 

  49. Sun, Y. L.; Han, F.; Zhang, C. Z.; Zhang, F. Q.; Zhou, D. W.; Liu, H. B.; Fan, C. L.; Li, X. K.; Liu, J. S. FeCl3 intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium-ion batteries. Energy Technol. 2019, 7, 1801091.

    Article  Google Scholar 

  50. Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

    Article  Google Scholar 

  51. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium—sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

    Article  Google Scholar 

  52. Billaud, J.; Bouville, F.; Magrini, T.; Villevieille, C.; Studart, A. R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 2016, 1, 16097.

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports are from the National Natural Science Foundation of China (No. 51502086), Natural Science Foundation of Hunan Province (No. 2018JJ3042) and Hunan Province Science and Technology Plan Projects (No. 2017TP1009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Han or Jinshui Liu.

Electronic Supplementary Material

12274_2019_2444_MOESM1_ESM.pdf

Improving the cycle stability of FeCl3-graphite intercalation compounds by polar Fe2O3 trapping in lithium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhang, C., Han, F. et al. Improving the cycle stability of FeCl3-graphite intercalation compounds by polar Fe2O3 trapping in lithium-ion batteries. Nano Res. 12, 1836–1844 (2019). https://doi.org/10.1007/s12274-019-2444-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2444-2

Keywords

Navigation