Skip to main content

Advertisement

Log in

Microwave-assisted exfoliation strategy to boost the energy storage capability of carbon fibers for supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon fibers, with reduced oxidized graphite layers on the surface obtained using a facile method, were developed as one-dimensional electrodes. The oxidized layers directly formed from the surface of the carbon fibers had a strong interconnectivity with the fiber core, and their conductivity was apparently improved after reduction by hydrazine hydrate. With an abundance of oxygen functional groups induced by oxidation, the one-dimensional electrodes showed a specific capacitance of 213.3 F g−1 at a current density of 0.1 A g−1, which was forty times more than that of the original carbon fibers when tested in a three-electrode configuration. The innately stability in aqueous solutions and the graphite layers from the carbon fibers themselves made the electrodes based on the carbon fibers endowed optimal cycling ability without a decline in specific capacitance after 10000 cycles. The device made of CF-R had a good energy density performance. This strategy provided a facile way to obtain a one-dimensional electrode with a high specific capacitance and good durability for energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  Google Scholar 

  2. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  Google Scholar 

  3. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    Article  Google Scholar 

  4. Denisa H-J, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19(3):438–447

    Article  Google Scholar 

  5. Kossyrev P (2012) Carbon black supercapacitors employing thin electrodes. J Power Sources 201:347–352

    Article  Google Scholar 

  6. Kang D, Liu Q, Gu J, Su Y, Zhang W, Zhang D (2015) “Egg-Box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano 9(11):11225–11233

    Article  Google Scholar 

  7. Xu P, Gu TL, Cao ZY, Wei BQ, Yu JQ, Li FX, Byun JH, Lu WB, Li Q, Chou TW (2014) Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv Energy Mater 4(3):1–7

    Article  Google Scholar 

  8. Ji J, Liu J, Lai L, Zhao X, Zhen Y, Lin J, Zhu Y, Ji H, Zhang LL, Ruoff RS (2015) In situ activation of nitrogen-doped graphene anchored on graphite foam for a high-capacity anode. ACS Nano 9(8):8609–8616

    Article  Google Scholar 

  9. Ji J, Li Y, Peng W, Zhang G, Zhang F, Fan X (2015) Advanced graphene-based binder-free electrodes for high-performance energy storage. Adv Mater 27(36):5264–5279

    Article  Google Scholar 

  10. Wang Y, Yu F, Zhu M, Ma C, Zhao D, Wang C, Zhou A, Dai B, Ji J, Guo X (2018) N-Doping of plasma exfoliated graphene oxide via dielectric barrier discharge plasma treatment for the oxygen reduction reaction. J Mater Chem A 6(5):2011–2017

    Article  Google Scholar 

  11. Zhang J, Zhao X, Huang Z, Xu T, Zhang Q (2016) High-performance all-solid-state flexible supercapacitors based on manganese dioxide/carbon fibers. Carbon 107:844–851

    Article  Google Scholar 

  12. Zhu S, Li L, Liu J, Wang H, Wang T, Zhang Y, Zhang L, Ruoff RS, Dong F (2018) Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 12(2):1033–1042

    Article  Google Scholar 

  13. Bae J, Song MK, Park YJ, Kim JM, Liu M, Wang ZL (2011) Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew Chem Int Ed 50(7):1683–1687

    Article  Google Scholar 

  14. Arabale G, Wagh D, Kulkarni M, Mulla IS, Vernekar SP, Vijayamohanan K, Rao AM (2003) Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide. Chem Phys Lett 376(1–2):207–213

    Article  Google Scholar 

  15. Liang J, Yuan C, Li H, Fan K, Wei Z, Sun H, Ma J (2018) Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano-Micro Lett 10(2):21

    Article  Google Scholar 

  16. Liang J, Gao X, Guo J, Chen C, Fan K, Ma J (2018) Electrospun MoO2@NC nanofibers with excellent Li+/Na+ storage for dual applications. Sci China Mater 61(1):30–38

    Article  Google Scholar 

  17. Deng X, Wei Z, Cui C, Liu Q, Wang C, Ma J (2018) Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J Mater Chem A 6(9):4013–4022

    Article  Google Scholar 

  18. Xie Y, Xia C, Du H, Wang W (2015) Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor. J Power Sources 286:561–570

    Article  Google Scholar 

  19. Zhang K, Zhang LL, Zhao XS, Wu J (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22(4):1392–1401

    Article  Google Scholar 

  20. Mini PA, Balakrishnan A, Nair SV, Subramanian KRV (2011) Highly super capacitive electrodes made of graphene/poly(pyrrole). Chem Commun 47(20):5753–5755

    Article  Google Scholar 

  21. Laforgue A (2011) All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers. J Power Sources 196(1):559–564

    Article  Google Scholar 

  22. Nam S, Jang J, J-j Park, Kim SW, Park CE, Kim JM (2012) High-performance low-voltage organic field-effect transistors prepared on electro-polished aluminum wires. ACS Appl Mat Interfaces 4(1):6–10

    Article  Google Scholar 

  23. Liu XY, Zhou M, Chen C, Zhang YX (2017) Electrochemical capacitor performance of TiO2 nanostructures and porous MnO2 composite supported on carbon fiber paper. Ceram Int 43(13):10595–10600

    Article  Google Scholar 

  24. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18(11):2740–2749

    Article  Google Scholar 

  25. Fuente E, Menéndez JA, Díez MA, Suárez D, Montes-Morán MA (2003) Infrared spectroscopy of carbon materials: a quantum chemical study of model. J Phys Chem B 107(26):6350–6359

    Article  Google Scholar 

  26. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41

    Article  Google Scholar 

  27. Galiotis C, Batchelder DN (1998) Strain dependences of the first- and second-order Raman spectra of carbon fibres. J Mater Sci Lett 7:545–547

    Article  Google Scholar 

  28. Lespade P, Marchand A, Couzi M, Cruege F (1984) Caracterisation de materiaux carbones par microspectrometrie Raman. Carbon 22(4/5):375–385

    Article  Google Scholar 

  29. Jeong H-K, Lee YP, Lahaye RJWE, Park M-H, An KH, Kim IJ, Yang C-W, Park CY, Ruoff RS, Lee YH (2008) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130(4):1362–1366

    Article  Google Scholar 

  30. Artyushkova K, Kiefer B, Halevi B, Knop-Gericke A, Schloglc R, Atanassov P (2013) Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures. Chem Commun 49(25):2539–2541

    Article  Google Scholar 

  31. Roldán S, Blanco C, Granda M, Menéndez R, Santamaría R (2011) Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew Chem 50(7):1699–1701

    Article  Google Scholar 

  32. Singh C, Paul A (2015) Physisorbed hydroquinone on activated charcoal as a supercapacitor: an application of proton-coupled electron transfer. J Phys Chem C 119(21):11382–11390

    Article  Google Scholar 

  33. Lu X, Liu T, Zhai T, Wang G, Yu M, Xie S, Ling Y, Liang C, Tong Y, Li Y (2014) Improving the cycling stability of metal-nitride supercapacitor electrodes with a thin carbon shell. Adv Energy Mater 4(4):1300994

    Article  Google Scholar 

  34. Kim DJ, Kim JK, Lee JH, Cho HH, Bae Y-S, Kim JH (2016) Scalable and bendable organized mesoporous TiN films templated by using a dual-functional amphiphilic graft copolymer for solid supercapacitors. J Mater Chem A 4(32):12497–12503

    Article  Google Scholar 

  35. Ramanuja N, Levy RA, Dharmadhikari SN, Ramos E, Pearce CW, Menasian SC, Schamberger PC, Collins CC (2002) Synthesis and characterization of low pressure chemically vapor deposited titanium nitride films using TiCl4 and NH3. Mater Lett 57(2):261–269

    Article  Google Scholar 

  36. Chmiola J, Largeot C, Taberna P-L, Simon P, Gogotsi Y (2008) Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew Chem 120(18):3440–3443

    Article  Google Scholar 

  37. Largeot C, Portet C, Chmiola J, Taberna P-L, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130(9):2730–2731

    Article  Google Scholar 

  38. Lozano-Castelló D, Cazorla-Amorós D, Linares-Solano A, Shiraishi S, Kurihara H, Oya A (2003) Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte. Carbon 41(9):1765–1775

    Article  Google Scholar 

  39. Fang B, Binder L (2007) Influence of hydrophobisation of carbon surface on electrochemical capacitor performance. J Electroanal Chem 609(2):99–104

    Article  Google Scholar 

  40. Guo M, Guo J, Jia D, Zhao H, Sun Z, Songa X, Lia Y (2015) Coal derived porous carbon fibers with tunable internal channels for flexible electrodes and organic matter absorption. J Mater Chem A 3(42):21178–21184

    Article  Google Scholar 

  41. Frackowiaka E, Béguinb R (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950

    Article  Google Scholar 

  42. Xiao X, Li T, Yang P, Gao Y, Jin H, Ni W, Zhan W, Zhang X, Cao Y, Zhong J, Gong L, Yen W-C, Mai W, Chen J, Huo K, Chueh Y-L, Wang Z, Zhou J (2012) Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6(10):9200–9206

    Article  Google Scholar 

  43. Xiao X, Ding T, Yuan L, Shen Y, Zhong Q, Zhang X, Cao Y, Hu B, Zhai T, Gong L, Chen J, Tong Y, Zhou J, Wang ZL (2012) WO3−x/MoO3−x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv Energy Mater 2(11):1328–1332

    Article  Google Scholar 

  44. Xu P, Gu T, Cao Z, Wei B, Yu J, Li F, Byun J-H, Lu W, Li Q, Chou T-W (2014) Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv Energy Mater 4(3):1300759

    Article  Google Scholar 

  45. Lu X, Yu M, Wang G, Zhai T, Xie S, Ling Y, Tong Y, Li Y (2013) H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv Mater 25(2):267–272

    Article  Google Scholar 

  46. Xiao X, Peng X, Jin H, Li T, Zhang C, Gao B, Hu B, Huo K, Zhou J (2013) Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv Mater 25(36):5091–5097

    Article  Google Scholar 

  47. Yang P, Xiao X, Li Y, Ding Y, Qiang P, Tan X, Mai W, Lin Z, Wu W, Li T, Jin H, Liu P, Zhou J, Wong CP, Wang ZL (2013) Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ASC Nano 7(3):2617–2626

    Article  Google Scholar 

  48. Zheng H, Zhai T, Yu M, Xie S, Liang C, Zhao W, Wang SCI, Zhang Z, Lu X (2013) TiO2@C core–shell nanowires for high-performance and flexible solid-state supercapacitors. J Mater Chem C 1(2):225–229

    Article  Google Scholar 

  49. Lu X, Yu M, Zhai T, Wang G, Xie S, Liu T, Liang C, Tong Y, Li Y (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13(6):2628–2633

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the “DHU Distinguished Young Professor Program”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhao or Qinghua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1745 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhao, X., Yao, M. et al. Microwave-assisted exfoliation strategy to boost the energy storage capability of carbon fibers for supercapacitors. J Mater Sci 53, 11050–11061 (2018). https://doi.org/10.1007/s10853-018-2366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2366-5

Keywords

Navigation