Skip to main content
Log in

One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Binary transition metal oxides are considered as promising anode materials for lithium-ion batteries (LIB), because they can effectively overcome the drawbacks of simple oxides. Here, a one-step hydrothermal method is described for the synthesis of regular ZnFe2O4 octahedrons about 200 nm in size at a low temperature without further annealing being required. The ZnFe2O4 octahedrons were characterized by powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The electrochemical performance of the ZnFe2O4 octahedrons was examined in terms of cyclic voltammetry and discharge/charge profiles. The ZnFe2O4 octahedrons exhibit a high capacity of 910 mA·h/g at 60 mA/g between 0.01 and 3.0 V after 80 cycles. They also deliver a reversible specific capacity of 730 mA·h/g even after 300 cycles at 1000 mA/g, a much better performance than those in previous reports. A set of reactions involved in the discharge/charge processes are proposed on the basis of ex situ high-resolution transmission electron microscopy (HRTEM) images and selected area electron diffraction (SAED) patterns of the electrode materials. The insights obtained will be of benefit in the design of future anode materials for lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rong, A.; Gao, X. P.; Li, G. R.; Yan, T. Y.; Zhu, H. Y.; Qu, J. Q.; Song, D. Y. Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. J. Phys. Chem. B 2006, 110, 14754–14760.

    Article  CAS  Google Scholar 

  2. Wang, G.; Gao, X. P.; Shen, P. W. Hydrothermal synthesis of Co2SnO4 nanocrystals as anode materials for Li-ion batteries. J. Power Sources 2009, 192, 719–723.

    Article  CAS  Google Scholar 

  3. Sharma, Y.; Sharma, N.; Subbarao, G.; Chowdari, B. Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ionics 2008, 179, 587–597.

    Article  CAS  Google Scholar 

  4. Sharma, Y.; Sharma, N.; Subba Rao, G. V.; Chowdari, B. V. R. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2855–2861.

    Article  CAS  Google Scholar 

  5. Sharma, Y.; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R. Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. J. Power Sources 2007, 173, 495–501.

    Article  CAS  Google Scholar 

  6. Kim, S. W.; Lee, H. W.; Muralidharan, P.; Seo, D. H.; Yoon, W. S.; Kim, D. K.; Kang, K. Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res. 2011, 4, 505–510.

    Article  CAS  Google Scholar 

  7. Courtel, F. M.; Duncan, H.; Abu-Lebdeh, Y.; Davidson, I. J. High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn). J. Mater. Chem. 2011, 21, 10206–10218.

    Article  CAS  Google Scholar 

  8. Li, M.; Yin, Y. X.; Li, C.; Zhang, F.; Wan, L. J.; Xu, S.; Evans, D. G. Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium-ion batteries. Chem. Commun. 2011, 48, 410–412.

    Article  Google Scholar 

  9. Lavela, P.; Tirado, J. L. CoFe2O4 and NiFe2O4 synthesized by sol-gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 2007, 172, 379–387.

    Article  CAS  Google Scholar 

  10. NuLi, Y. N.; Chu, Y. -Q.; Qin, Q. Z. Nanocrystalline ZnFe2O4 and Ag-doped ZnFe2O4 films used as new anode materials for Li-ion batteries. J. Electrochem. Soc. 2004, 151, A1077–1083.

    Article  CAS  Google Scholar 

  11. Sharma, Y.; Sharma, N.; Rao, G.; Chowdari, B. Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim. Acta 2008, 53, 2380–2385.

    Article  CAS  Google Scholar 

  12. Teh, P. F.; Sharma, Y.; Pramana, S. S.; Srinivasan, M. Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. J. Mater. Chem. 2011, 21, 14999–15008.

    Article  CAS  Google Scholar 

  13. Guo, X.; Lu, X.; Fang, X.; Mao, Y.; Wang, Z.; Chen, L.; Xu, X.; Yang, H.; Liu, Y. Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochem. Commun. 2010, 12, 847–850.

    Article  CAS  Google Scholar 

  14. Xiao, X. L.; Yang, L. M.; Zhao, H.; Hu, Z. B.; Li, Y. D. Facile synthesis of LiCoO2 nanowires with high electrochemical performance. Nano Res. 2012, 5, 27–32.

    Article  CAS  Google Scholar 

  15. Wang, D. S.; Ma, X. L.; Wang, Y. G.; Wang, L.; Wang, Z. Y.; Zheng, W.; He, X. M.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 2010, 3, 1–7.

    Article  Google Scholar 

  16. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Energy Mater. 2010, 22, E28–E62.

    CAS  Google Scholar 

  17. Wang, M.; Ai, Z.; Zhang, L. Generalized preparation of porous nanocrystalline ZnFe2O4 superstructures from zinc ferrioxalate precursor and its superparamagnetic property. J. Phys. Chem. C 2008, 112, 13163–13170.

    Article  CAS  Google Scholar 

  18. Lv, H. J.; Ma, L.; Zeng, P.; Ke, D. N.; Peng, T. Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light. J. Mater. Chem. 2010, 20, 3665–3672.

    Article  CAS  Google Scholar 

  19. Zhang, R.; Huang, J.; Zhao, J.; Sun, Z.; Wang, Y. Sol-gel auto-combustion synthesis of zinc ferrite for moderate temperature desulfurization. Energ. Fuel. 2007, 21, 2682–2687.

    Article  CAS  Google Scholar 

  20. Zhu, H. L.; Gu, X. Y.; Zuo, D. T.; Wang, Z. K.; Wang, N. Y.; Yao, K. H. Microemulsion-based synthesis of porous zinc ferrite nanorods and its application in a room- temperature ethanol sensor. Nanotechnol. 2008, 19, 405503.

    Article  Google Scholar 

  21. Xu, T.; Zhou, X.; Jiang, Z.; Kuang, Q.; Xie, Z.; Zheng, L. Syntheses of nano/submicrostructured metal oxides with all polar surfaces exposed via a molten salt route. Cryst. Growth Des. 2008, 9, 192–196.

    Article  Google Scholar 

  22. Zhang, G. Y.; Li, C. S.; Cheng, F. Y.; Chen, J. ZnFe2O4 tubes: Synthesis and application to gas sensors with high sensitivity and low-energy consumption. Sensor. Actuat. B-Chem. 2007, 120, 403–410.

    Article  Google Scholar 

  23. Qian, H. S.; Hu, Y.; Li, Z. Q.; Yang, X. Y.; Li, L. C.; Zhang, X. T.; Xu, R. ZnO/ZnFe2O4 Magnetic fluorescent bifunctional hollow nanospheres: Synthesis, characte-rization, and their optical/magnetic properties. J. Phys. Chem. C 2010, 114, 17455–17459.

    Article  CAS  Google Scholar 

  24. Haetge, J.; Suchomski, C.; Brezesinski, T. Ordered mesoporous MFe2O4 (M = Co, Cu, Mg, Ni, Zn) thin films with nanocrystalline walls, uniform 16 nm diameter pores and high thermal stability: Template-directed synthesis and characterization of redox active trevorite. Inorg. Chem. 2010, 49, 11619–11626.

    Article  CAS  Google Scholar 

  25. Voorhees, P. W. Ostwald ripening of two-phase mixtures. Annu. Rev. Mater. Sci. 1992, 22, 197–215.

    Article  CAS  Google Scholar 

  26. Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.

    Article  CAS  Google Scholar 

  27. Zhou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 2011, 40, 4167–4185.

    Article  CAS  Google Scholar 

  28. Li, H.; Huang, X.; Chen, L. Anodes based on oxide materials for lithium rechargeable batteries. Solid State Ionics 1999, 123, 189–197.

    Article  CAS  Google Scholar 

  29. Zhang, Q.; Shi, Z.; Deng, Y.; Zheng, J.; Liu, G.; Chen, G. Hollow Fe3O4/C spheres as superior lithium storage materials. J. Power Sources 2012, 197, 305–309.

    Article  CAS  Google Scholar 

  30. Nyten, A.; Kamali, S.; Haggstrom, L.; Gustafsson, T.; Thomas, J. O. The lithium extraction/insertion mechanism in Li2FeSiO4. J. Mater. Chem. 2006, 16, 2266–2272.

    Article  CAS  Google Scholar 

  31. Binotto, G.; Larcher, D.; Prakash, A. S.; Herrera Urbina, R.; Hegde, M. S.; Tarascon, J. M. Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 powders. Chem. Mater. 2007, 19, 3032–3040.

    Article  CAS  Google Scholar 

  32. Deng, Y.; Zhang, Q.; Tang, S.; Zhang, L.; Deng, S.; Shi, Z.; Chen, G. One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem. Commun. 2011, 47, 6828–6830.

    Article  CAS  Google Scholar 

  33. Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M. An update on the reactivity of nanoparticles Co-based compounds towards Li. Solid State Sci. 2003, 5, 895–904.

    Article  CAS  Google Scholar 

  34. Balaya, P.; Li, H.; Kienle, L.; Maier, J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 2003, 13, 621–625.

    Article  CAS  Google Scholar 

  35. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  CAS  Google Scholar 

  36. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946.

    Article  CAS  Google Scholar 

  37. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

    Article  CAS  Google Scholar 

  38. Zhu, X.; Zhu, Y.; Murali, S.; Stoller, M. D.; Ruoff, R. S. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 2011, 5, 3333–3338.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhicheng Ju or Jian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, Z., Ju, Z., Yang, J. et al. One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res. 5, 477–485 (2012). https://doi.org/10.1007/s12274-012-0233-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0233-2

Keywords

Navigation