Skip to main content
Log in

A noninvasive online system for biomass monitoring in shaker flasks using backward scattered light

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This paper presents a noninvasive optical sensor system for monitoring cell growth in shaker flasks commonly used in biological laboratories. The system uses an open-source microprocessor board to monitor concentration of Escherichia coli host cells. To allow measurement for a range of filling degrees and shaker speeds, the backscattering angle is chosen to minimize interference from surface reflections and the measurement window is synchronized to the position of the shaker flask. A nonlinear calibration model of scattered light can predict offline optical density with a mean relative error of 5.2%, an accuracy which is comparable to the classical offline method and sufficient for biotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, H., W. Williams-Dalson, E. Keshavarz-Moore, and P. A. Shamlou (2005) Computational fluid dynamics (CFD) analysis of mixing and gas–liquid mass transfer in shake flasks. Biotechnol. Appl. Biochem. 41: 1–8.

    Article  Google Scholar 

  2. Buchs, J. (2001) Introduction to advantages and problems of shaken cultures. Biochem. Eng. J. 7: 91–98.

    Article  CAS  Google Scholar 

  3. Christian, U., J. Schmidt-Hager, M. Findeis, G. T. John, T. Scheper, and S. Beutel (2014) Application of an online-biomass sensor in an optical multisensory platform prototype for growth monitoring of biotechnical relevant microorganism and cell lines in single-use shake flasks. Sensors 14: 17390–17405.

    Article  Google Scholar 

  4. Matanguihan, B. M., K. B. Konstantinov, and T. Yoshida (1994) Dielectric measurement to monitor the growth and the physiological state of biological cells. Bioproc. Eng. 11: 213–222.

    Article  CAS  Google Scholar 

  5. Schmidt-Hager, J., U. Christian, M. Findeis, G. T. John, T. Scheper, and S. Beutel (2014) Noninvasive online biomass detector system for cultivation in shake flasks. Eng. Life Sci. 14: 467–476.

    Article  CAS  Google Scholar 

  6. Chattopadhyay, S., V. S. Bisaria, T. Scheper, and A. K. Srivastava (2002) Non-invasive methods for determination of cellular growth in Podophyllum hexandrum suspension cultures. Biotech. Bioproc. Eng. 7: 331–334.

    Article  CAS  Google Scholar 

  7. Lam, H. and Y. Kostov (2009) Optical instrumentation for bioprocess monitoring. Adv. Biochem. Eng. Biotechnol. 116: 1–28.

    CAS  Google Scholar 

  8. Ulber, R., J. G. Frerichs, and S. Beutel (2003) Optical sensor systems for bioprocess monitoring. Anal. Bioanal. Chem. 376: 342–348.

    Article  CAS  Google Scholar 

  9. Gregory, M. E. and N. F. Thornhill (1997) The effects of aeration and agitation on the measurement of yeast biomass using a laser turbidity probe. Bioproc. Eng. 16: 339–344.

    Article  CAS  Google Scholar 

  10. Matanguihan, R. M., K. B. Konstantinov, and T. Yoshida (1994) Dielectric measurement to monitor the growth and the physiological states of biological cells. Bioproc. Eng. 11: 213–222.

    Article  CAS  Google Scholar 

  11. Kiviharju, K., K. Salonen, U. Moilanen, and T. Eerikainen (2008) Biomass measurement online: the performance of in situ measurements and software sensors. J. Ind. Microbiol. Biotech. 35: 657–665.

    Article  CAS  Google Scholar 

  12. Griffiths, M. J., C. Garcin, R. P. van Hille, and S. T. L. Harrison (2011) Interference by pigment in the estimation of microalgal biomass concentration by optical density. J. Microbiol. Meth. 85: 119–123.

    Article  CAS  Google Scholar 

  13. Hopfner, T., A. Bluma, G. Rudolph, P. Lindner, and T. Scheper (2010) A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring. Bioproc. Biosys. Eng. 33: 247–256.

    Article  Google Scholar 

  14. Zhong, N. B., Q. Liao, X. Zhu, and M. F. Zhao (2015) Fiber-optic differential absorption sensor for accurately monitoring biomass in a photobioreactor. Appl. Opt. 54: 228–235.

    Article  Google Scholar 

  15. Schneider, K., V. Schutz, G. John, and E. Heinzle (2010) Optical device for parallel on-line measurement of dissolved oxygen and PH in shake flask cultures. Bioproc. Biosys. Eng. 33: 541–547.

    Article  CAS  Google Scholar 

  16. Kensy, F., E. Zang, C. Faulhammer, R. K. Tan, and J. Buchs (2009) Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb. Cell Fact. 8: 1–30.

    Article  Google Scholar 

  17. Samorski, M., G. Muller-Newen, and J. Buchs (2005) Quasi-continuous combined scattered light and fluorescence measurements: A novel measurement technique for shaken microtiter plates. Biotech. Bioeng. 92: 61–68.

    Article  CAS  Google Scholar 

  18. Peng, H. (2008) Apparatus and method for monitoring biological cell culture. US Patent 7,339,671.

    Google Scholar 

  19. Li, J., X. B. Zhan, T. Z. Liu, Z. Y. Zheng, and X. M. Qi (2009) Numerical simulation of fluid flow in Erlenmeyer shake flask with computational fluid dynamics. J. Chem. Industry Eng. 60: 878–885.

    CAS  Google Scholar 

  20. Li, C., J. Y. Xia, J. Chu, Y. H. Wang, Y. P. Zhuang, and S. L. Zhang (2013) CFD analysis of the turbulent flow in baffled shake flasks. Biochem. Eng. J. 70: 140–150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Mao or Jinming Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Yan, Y., Eichstädt, O. et al. A noninvasive online system for biomass monitoring in shaker flasks using backward scattered light. Biotechnol Bioproc E 22, 161–169 (2017). https://doi.org/10.1007/s12257-016-0338-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0338-7

Keywords

Navigation