Skip to main content
Log in

Optical sensor systems for bioprocess monitoring

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bioreactors are closed systems in which microorganisms can be cultivated under defined, controllable conditions that can be optimized with regard to viability, reproducibility, and product-oriented productivity. To drive the biochemical reaction network of the biological system through the desired reaction optimally, the complex interactions of the overall system must be understood and controlled. Optical sensors which encompass all analytical methods based on interactions of light with matter are efficient tools to obtain this information. Optical sensors generally offer the advantages of noninvasive, nondestructive, continuous, and simultaneous multianalyte monitoring. However, at this time, no general optical detection system has been developed. Since modern bioprocesses are extremely complex and differ from process to process (e.g., fungal antibiotic production versus mammalian cell cultivation), appropriate analytical systems must be set up from different basic modules, designed to meet the special demands of each particular process. In this minireview, some new applications in bioprocess monitoring of the following optical sensing principles will be discussed: UV spectroscopy, IR spectroscopy, Raman spectroscopy, fluorescence spectroscopy, pulsed terahertz spectroscopy (PTS), optical biosensors, in situ microscope, surface plasmon resonance (SPR), and reflectometric interference spectroscopy (RIF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Noui L, Hill J, Keay Wang RY, Smith T, Yeung K, Habib G, Hoare M (2001) Chem Eng Process 41:107–114

    Article  Google Scholar 

  2. Nomikos P, MacGregor JF (1994) AIChE 40:1361

    CAS  Google Scholar 

  3. Nomikos P, MacGregor JF (1995) Technometrics 37:41

    Google Scholar 

  4. Vaidyanathan S, Arnold SA, Matheson L, Mohan P, McNeil B, Harvey L (2001) Biotechnol Bioeng 74/5:376–388

    Google Scholar 

  5. Kansiz M, Gapes JR, McNaughton D, Lendl B, Schuster KC (2001) Anal Chim Acta 438:175–186

    Article  CAS  Google Scholar 

  6. Yeung KSY, Hoare M, Thornhill NF, Williams T, Vaghijani (1998) Biotechnol Bioeng 63/6:684–693

    Google Scholar 

  7. Arnold SA, Gaensakoo R, Harvey LM, McNeil B (2002) Biotechnol Bioeng 80 (4):405–413

    Google Scholar 

  8. Jung BJ, Lee S, Yang IH, Good T, Cote GL (2002) Appl Spectrosc 56(1):51–57

    CAS  Google Scholar 

  9. Vaidyanathan S, Arnold SA, Matheson L, Mohan P, Macaloney G, McNeil B, Harvey L (2000) Biotechnol Prog 16:1098–1105

    Article  CAS  PubMed  Google Scholar 

  10. Sivakesava S, Irudayaraj J, Demicri A (2001) J Ind Microbiol Biotechnol 26:185–190

    Article  CAS  PubMed  Google Scholar 

  11. Arnold SA, Matheson L, Harvey LM, McNeil B (2001) Biotechnol Lett 23:143–147

    Article  CAS  Google Scholar 

  12. Vaidyanathan S, Harvey LM, McNeil B (2001) Anal Chim Acta 428:41–59

    Article  CAS  Google Scholar 

  13. Arnold SA, Crowley J, Vaidyanathan S, Matheson L, Mohan P, Hall JW, Harvey LM, McNeil B (2000) Enzyme Microbial Technol 27:691–697

    Article  Google Scholar 

  14. McGovern AC, Broadhurst D, Taylor J, Kaderbhai N, Winson MK, Small DA, Rowland JJ, Kell DB, Goodcare R (2002) Biotechnol Bioeng 78/5:527–538

    Google Scholar 

  15. Acha V, Meurens M, Naveau H, Agathos SN (2000) Biotechnol Bioeng 68/5:473–487

    Google Scholar 

  16. Ulber R, Protsch C, Sölle D, Hitzmann B, Willke B, Faurie R, Scheper T (2001) Eng Life Sci 1(1):15–17

    CAS  Google Scholar 

  17. Ulber R, Faurie R, Sosnitza P, Fischer L, Stärk E, Harbeck C, Scheper T (2000) J Chromatogr A 882:329–334

    Article  CAS  PubMed  Google Scholar 

  18. Marose S, Lindemann C, Scheper T (1998) Biotechnol Prog 14:63–74

    Article  CAS  PubMed  Google Scholar 

  19. Bell SEJ, Bourguignon ESO, Grady AO, Villaumie J, Dennis AC (2002) Spectrosc Eur 14(6):17–20

    CAS  Google Scholar 

  20. Skibsted E, Lindemann C, Roca C, Olsson L (2001) JBiotechnol 88:47–57

    Article  CAS  Google Scholar 

  21. McGover AC, Broadhurst D, Taylor J, Kaderbhai N, Winson MK, Small DA, Rowland JJ, Kell DB, Goodacre R (2002) Biotechnol Bioeng 78(5):527–538

    Article  PubMed  Google Scholar 

  22. Vankeirsbilck T, Vercauteren A, Baeyens W, Van der Weken G, Verpoort F, Vergote G, Remon JP (2002) Trac-Trends Anal Chem 21(12):869–877

    Google Scholar 

  23. Shaw AD, Kaderbhai N, Jones A, Woodward M, Goodacre R, Rowland JJ, Kell DB (1999) Appl Spectrosc 53:1419

    CAS  Google Scholar 

  24. Schügerl K (2001) J Biotechnol 85:149–173

    CAS  PubMed  Google Scholar 

  25. Shu HC, Hakanson H, Mattiasson B (1995) Anal Chim Acta 300:277–285

    Article  CAS  Google Scholar 

  26. Bartolome AJ, Ulber R, Scheper T, Sagi E, BelkinS (2003) Sens Actuators B 89:27–32

    Article  Google Scholar 

  27. Funabashi H, Imajo T, Kojima J, Kobatake E, Aizawa M (1999) Luminescence 14:291–296

    Article  CAS  PubMed  Google Scholar 

  28. Kostov Y, Harms P, Randers-Eichhorn L, Rao G (2001) Biotechnol Bioeng 72/3:346–352

    Google Scholar 

  29. Harms P, Kostov Y, Rao G (2002) Curr Opin Biotechnol 13:124–127

    Article  CAS  PubMed  Google Scholar 

  30. Salgado AM, Folly ROM, Valdman B (2001) Sens Actuators B 75:24–28

    Article  Google Scholar 

  31. Jeevarajan AS, Vani S, Taylor TD, Anderson MM (2002) Biotechnol Bioeng 78/4:467–472

    Google Scholar 

  32. Joeris K, Frerichs JG, Konstantinov K, Scheper T (2002) Cytotechnology 38:129–134

    Article  CAS  Google Scholar 

  33. Baker K, Rendall MH, Patel A, Boyd P, Hare M, Freedman RB, James DC (2002) Trends Biotechnol 20/4:149–156

    Google Scholar 

  34. Ivansson D, Bayer K, Mandenius CF (2002) Anal Chim Acta 456:193–200

    Article  CAS  Google Scholar 

  35. Hänel C, Gauglitz G (2002) Anal Bioanal Chem 372:91–100

    Article  PubMed  Google Scholar 

  36. Baird CL, Myszka DG (2001) J Mol Recognit 14:261–268

    Article  CAS  PubMed  Google Scholar 

  37. Bracewell DG, Brown RA, Gill A, Hoare M (2001) Eng Life Sci 1:25–31

    CAS  Google Scholar 

  38. Homola J, Lu HB, Nenninger GG, Dostálek J, Yee SS (2001) Sens Actuators B 76:403–410

    Article  Google Scholar 

  39. Bracewell DG, Gill A, Hoare M (2002) Trans IchemE 80/C:71–77

  40. Zhang XC (2002) Phys Med Biol 47(21):3667–3677

    Article  CAS  PubMed  Google Scholar 

  41. Markelz A G, Roitberg A, Heilweil EJ (2003) Chem Phys Lett (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Ulber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulber, R., Frerichs, JG. & Beutel, S. Optical sensor systems for bioprocess monitoring. Anal Bioanal Chem 376, 342–348 (2003). https://doi.org/10.1007/s00216-003-1930-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-1930-1

Keywords

Navigation