Skip to main content
Log in

Recent progress in nanobiocatalysis for enzyme immobilization and its application

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recent advances in nanotechnology have provided various nanoscale materials that can be used as support for enzyme immobilization. Nanobiocatalysis integrating the biocatalyst and nanoscale materials is drawing great attention as innovative technology. Nanobiocatalysis could achieve not only a much higher enzyme loading capacity and a significantly enhanced mass transfer efficiency, but also unbelievable stabilization. In this review, we will present and discuss the recent progress in nanobiocatalysis and its applications in the fields of bioelectronics, bioconversion, and proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J. and J. W. Grate (2003) Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett. 3: 1219–1222.

    Article  CAS  Google Scholar 

  2. Ge, J. (2009) Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide. Biomacromol. 10: 1612–1618.

    Article  CAS  Google Scholar 

  3. Min, K. and Y. J. Yoo (2009) Amperometric detection of dopamine based on tyrosinase-SWNTs-Ppy composite electrode. Talanta 80: 1007–1011.

    Article  CAS  Google Scholar 

  4. Min, K., J. Ryu, and Y. Yoo (2010) Mediator-free glucose/O2 biofuel cell based on a 3-dimensional glucose oxidase/SWNT/polypyrrole composite electrode. Biotechnol. Bioproc. Eng. 15: 371–375.

    Article  CAS  Google Scholar 

  5. Min, K. (2013) Novel strategy for enhancing productivity in l-DOPA synthesis: The electroenzymatic approach using well-dispersed l-tyrosine. J. Mol. Catal. B: Enz. 90: 87–90.

    Article  CAS  Google Scholar 

  6. Min, K., D.-H. Park, and Y. J. Yoo (2010) Electroenzymatic synthesis of l-DOPA. J. Biotechnol. 146: 40–44.

    Article  CAS  Google Scholar 

  7. Gao, Y. and I. Kyratzis (2008) Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide- A critical assessment. Bioconjugate Chem. 19: 1945–1950.

    Article  CAS  Google Scholar 

  8. Azamian, B. R. (2002) Bioelectrochemical single-walled carbon nanotubes. J. Am. Chem. Soc. 124: 12664–12665.

    Article  CAS  Google Scholar 

  9. Yu, X. (2003) Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes. Electrochem. Commun. 5: 408–411.

    Article  CAS  Google Scholar 

  10. Lee, Y.-M. (2006) Immobilization of horseradish peroxidase on multi-wall carbon nanotubes and its electrochemical properties. Biotechnol. Lett. 28: 39–43.

    Article  CAS  Google Scholar 

  11. Asuri, P. (2006) Water-soluble carbon nanotube-enzyme conjugates as functional biocatalytic formulations. Biotechnol. Bioeng. 95: 804–811.

    Article  CAS  Google Scholar 

  12. Alonso-Lomillo, M. A. (2007) Hydrogenase-coated carbon nanotubes for efficient H2 oxidation. Nano Lett. 7: 1603–1608.

    Article  CAS  Google Scholar 

  13. Lin, Y., F. Lu, and J. Wang (2004) Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanal. 16: 145–149.

    Article  CAS  Google Scholar 

  14. Pavlidis, I. V. (2010) Functionalized multi-wall carbon nanotubes for lipase immobilization. Adv. Eng. Mat. 12: 179–183.

    Article  Google Scholar 

  15. Pavlidis, I. V. (2012) Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour. Technol. 115: 164–171.

    Article  CAS  Google Scholar 

  16. Dyal, A. (2003) Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J. Am. Chem. Soc. 125: 1684–1685.

    Article  CAS  Google Scholar 

  17. Chen, R. J. (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. American Chem. Soc. 123: 3838–3839.

    Article  CAS  Google Scholar 

  18. Shim, M. (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2: 285–288.

    Article  CAS  Google Scholar 

  19. Min, K. (2012) Enzyme immobilization on carbon nanomaterials: Loading density investigation and zeta potential analysis. J. Mol. Catal. B: Enz. 83: 87–93.

    Article  CAS  Google Scholar 

  20. Ngo, T. P. N. (2012) Reversible clustering of magnetic nanobiocatalysts for high-performance biocatalysis and easy catalyst recycling. Chem. Commun. 48: 4585–4587.

    Article  CAS  Google Scholar 

  21. El-Aassar, M. R.(2013) Functionalized electrospun nanofibers from poly (AN-co-MMA) for enzyme immobilization. J. Mol. Catal.B: Enz. 85: 140–148.

    Article  Google Scholar 

  22. Li, S.-F. (2011) Immobilization of Pseudomonas cepacia lipase onto the electrospun PAN nanofibrous membranes for transesterification reaction. J. Mol. Catal.B: Enz. 73: 98–103.

    Article  CAS  Google Scholar 

  23. Gupta, A. (2013) Geranyl acetate synthesis catalyzed by Thermomyces lanuginosus lipase immobilized on electrospun polyacrylonitrile nanofiber membrane. Proc. Biochem. 48: 124–132.

    Article  CAS  Google Scholar 

  24. Bernal, C., L. Sierra, and M. Mesa (2012) Improvement of thermal stability of β-galactosidase from Bacillus circulans by multipoint covalent immobilization in hierarchical macro-mesoporous silica. J. Mol. Catal. B: Enz. 84: 166–172.

    Article  CAS  Google Scholar 

  25. Khoobi, M. (2014) Synthesis of functionalized polyethylenimine-grafted mesoporous silica spheres and the effect of side arms on lipase immobilization and application. Biochem. Eng. J. 88: 131–141.

    Article  CAS  Google Scholar 

  26. Kim, J., J. W. Grate, and P. Wang (2006) Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61: 1017–1026.

    Article  CAS  Google Scholar 

  27. Yang, Z. and C. Zhang (2013) Single-enzyme nanoparticles based urea biosensor. Sensors and Actuators B: Chem. 188: 313–317.

    Article  CAS  Google Scholar 

  28. Gao, M. (2009) Novel monolithic enzymatic microreactor based on single-enzyme nanoparticles for highly efficient proteolysis and its application in multidimensional liquid chromatography. J. Chromatography A 1216: 7472–7477.

    Article  CAS  Google Scholar 

  29. Yan, M. (2006) Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. J. Am. Chem. Soc. 128: 11008–11009.

    Article  CAS  Google Scholar 

  30. Yan, M. (2010) A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat. Nano 5: 48–53.

    Article  CAS  Google Scholar 

  31. Wang, R. (2013) Substrate imprinted lipase nanogel for one-step synthesis of chloramphenicol palmitate. Green Chem. 15: 1155–1158.

    Article  CAS  Google Scholar 

  32. Lin, M. (2012) Magnetic enzyme nanogel (MENG): A universal synthetic route for biocatalysts. Chem. Commun. 48: 3315–3317.

    Article  CAS  Google Scholar 

  33. Yang, Z., S. Si, and C. Zhang (2008) Magnetic single-enzyme nanoparticles with high activity and stability. Biochem. Biophys. Res. Commun. 367: 169–175.

    Article  CAS  Google Scholar 

  34. Luckarift, H. R. (2004) Enzyme immobilization in a biomimetic silica support. Nat. Biotech. 22: 211–213.

    Article  CAS  Google Scholar 

  35. Poulsen, N. (2007) Silica immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana. Angewandte Chemie Internat. Ed. 46: 1843–1846.

    Article  CAS  Google Scholar 

  36. Marner, W. D. (2007) Morphology of artificial silica matrices formed via autosilification of a silaffin/protein polymer chimera. Biomacromol. 9: 1–5.

    Article  Google Scholar 

  37. Nam, D. H. (2009) A novel route for immobilization of proteins to silica particles incorporating silaffin domains. Biotechnol. Prog. 25: 1643–1649.

    CAS  Google Scholar 

  38. Marner, W. D. (2009) Enzyme immobilization via silaffin-mediated autoencapsulation in a biosilica support. Biotechnol. Prog. 25: 417–423.

    Article  CAS  Google Scholar 

  39. Choi, O. (2011) A biosensor based on the self-entrapment of glucose oxidase within biomimetic silica nanoparticles induced by a fusion enzyme. Enz. Microbial. Technol. 49: 441–445.

    Article  CAS  Google Scholar 

  40. Nam, D. (2013) Silaffin peptides as a novel signal enhancer for gravimetric biosensors. Appl. Biochem. Biotechnol. 170: 25–31.

    Article  CAS  Google Scholar 

  41. Kim, J. (2006) Single enzyme nanoparticles in nanoporous silica: A hierarchical approach to enzyme stabilization and immobilization. Enz. Microbial. Technol. 39: 474–480.

    Article  CAS  Google Scholar 

  42. Willner, I. and E. Katz (2005) Bioelectronics — An Introduction. pp. 1–13. Wiley-VCH Verlag GmbH & Co. KGaA.

    Book  Google Scholar 

  43. Osman, M. H., A. A. Shah, and F. C. Walsh (2011) Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells. Biosensors Bioelectron. 26: 3087–3102.

    CAS  Google Scholar 

  44. Leech, D., P. Kavanagh, and W. Schuhmann (2012) Enzymatic fuel cells: Recent progress. Electrochim. Acta 84: 223–234.

    Article  CAS  Google Scholar 

  45. Minteer, S. D., B. Y. Liaw, and M. J. Cooney (2007) Enzyme-based biofuel cells. Curr. Opin. Biotechnol. 18: 228–234.

    Article  CAS  Google Scholar 

  46. Kim, J., J. W. Grate, and P. Wang (2008) Nanobiocatalysis and its potential applications. Trends in Biotechnol. 26: 639–646.

    Article  CAS  Google Scholar 

  47. Kim, J., H. Jia, and P. Wang (2006) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv. 24: 296–308.

    Article  CAS  Google Scholar 

  48. Uk Lee, H. (2010) Enzymatic fuel cells based on electrodeposited graphite oxide/cobalt hydroxide/chitosan composite-enzymeelectrode. Biosensors and Bioelectron. 42: 342–348.

    Article  Google Scholar 

  49. Kim, B. C. (2011) Highly stable enzyme precipitate coatings and their electrochemical applications. Biosens. Bioelectron. 26: 1980–1986.

    Article  CAS  Google Scholar 

  50. Kwon, K. Y. (2010) Nanoscale enzyme reactors in mesoporous carbon for improved performance and lifetime of biosensors and biofuel cells. Biosens. Bioelectron. 26: 655–660.

    Article  CAS  Google Scholar 

  51. de Poulpiquet, A. (2014) Design of a H2/O2 biofuel cell based on thermostable enzymes. Electrochem. Commun. 42: 72–74.

    Article  Google Scholar 

  52. Stolarczyk, K. (2012) Hybrid biobattery based on arylated carbon nanotubes and laccase. Bioelectrochem. 87: 154–163.

    Article  CAS  Google Scholar 

  53. Turner, A. P. F. (1989) Current trends in biosensor research and development. Sens. Actuators 17: 433–450.

    Article  CAS  Google Scholar 

  54. Singh, S. (2006) Cholesterol biosensor based on cholesterol esterase, cholesterol oxidase and peroxidase immobilized onto conducting polyaniline films. Sens. Actuators B: Chem. 115: 534–541.

    Article  CAS  Google Scholar 

  55. Arango Gutierrez, E. (2013) Reengineered glucose oxidase for amperometric glucose determination in diabetes analytics. Biosens. Bioelectron. 50: 84–90.

    Article  CAS  Google Scholar 

  56. Li, G., N. Z. Ma, and Y. Wang (2005) A new handheld biosensor for monitoring blood ketones. Sens. Actuators B: Chem. 109: 285–290.

    Article  CAS  Google Scholar 

  57. Lee, J. H. (2010) A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosens. Bioelectron. 25: 1566–1570.

    Article  CAS  Google Scholar 

  58. Liu, J., G. Olsson, and B. Mattiasson (2003) Monitoring of two-stage anaerobic biodegradation using a BOD biosensor. J. Biotechnol. 100: 261–265.

    Article  CAS  Google Scholar 

  59. Raghu, P. (2014) Acetylcholinesterase based biosensor for monitoring of Malathion and Acephate in food samples: A voltammetric study. Food Chem. 142: 188–196.

    Article  CAS  Google Scholar 

  60. Manso, J. (2008) Bienzyme amperometric biosensor using gold nanoparticle-modified electrodes for the determination of inulin in foods. Anal. Biochem. 375: 345–353.

    Article  CAS  Google Scholar 

  61. Kwon, K. Y. (2010) High-performance biosensors based on enzyme precipitate coating in gold nanoparticle-conjugated single-walled carbon nanotube network films. Carbon 48: 4504–4509.

    Article  CAS  Google Scholar 

  62. Batra, B., S. Kumari, and C. S. Pundir (2014) Construction of glutamate biosensor based on covalent immobilization of glutmate oxidase on polypyrrole nanoparticles/polyaniline modified gold electrode. Enz. Microbial. Technol. 57: 69–77.

    Article  CAS  Google Scholar 

  63. Wang, G. (2014) Synthesis of highly dispersed zinc oxide nanoparticles on carboxylic graphene for development a sensitive acetylcholinesterase biosensor. Sens. Actuators B: Chem. 190: 730–736.

    Article  CAS  Google Scholar 

  64. Lata, S., B. Batra, and C. S. Pundir (2012) Construction of damino acid biosensor based on d-amino acid oxidase immobilized onto poly (indole-5-carboxylic acid)/zinc sulfide nanoparticles hybrid film. Proc. Biochem. 47: 2131–2138.

    Article  CAS  Google Scholar 

  65. Hollmann, F. (2011) Enzyme-mediated oxidations for the chemist. Green Chem. 13: 226–265.

    Article  CAS  Google Scholar 

  66. Hollmann, F., I. W. C. E. Arends, and D. Holtmann (2011) Enzymatic reductions for the chemist. Green Chem.. 13: 2285–2314.

    Article  CAS  Google Scholar 

  67. Van Dyk, J. S. and B. I. Pletschke (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30: 1458–1480.

    Article  Google Scholar 

  68. Asuri, P. (2006) Directed assembly of carbon nanotubes at liquidliquid interfaces: Nanoscale conveyors for interfacial biocatalysis. J. Am. Chem. Soc. 128: 1046–1047.

    Article  CAS  Google Scholar 

  69. Tzialla, A. A. (2010) Lipase immobilization on smectite nanoclays: Characterization and application to the epoxidation of α-pinene. Bioresour. Technol. 101: 1587–1594.

    Article  CAS  Google Scholar 

  70. Kim, Y. H. and Y. J. Yoo (2009) Regeneration of the nicotinamide cofactor using a mediator-free electrochemical method with a tin oxide electrode. Enz. Microbial. Technol. 44: 129–134.

    Article  CAS  Google Scholar 

  71. El-Zahab, B., D. Donnelly, and P. Wang (2008) Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes. Biotechnol. Bioeng. 99: 508–514.

    Article  CAS  Google Scholar 

  72. Zhang, Y. (2011) Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration. Bioresour. Technol. 102: 1837–1843.

    Article  CAS  Google Scholar 

  73. Kumar, V. (2013) Immobilization of Rhizopus oryzae lipase on magnetic Fe3O4-chitosan beads and its potential in phenolic acids ester synthesis. Biotechnol. Bioproc. Eng.18: 787–795.

    Article  CAS  Google Scholar 

  74. Khan, M., Q. Husain, and A. Azam (2012) Immobilization of porcine pancreatic α-amylase on magnetic Fe2O3 nanoparticles: Applications to the hydrolysis of starch. Biotechnol. Bioproc. Eng. 17: 377–384.

    Article  CAS  Google Scholar 

  75. Yamaguchi, H. and M. Miyazaki (2013) Enzyme-immobilized reactors for rapid and efficient sample preparation in MS-based proteomic studies. Proteomics 13: 457–466.

    Article  CAS  Google Scholar 

  76. Bensimon, A., A. J. R. Heck, and R. Aebersold (2012) Mass spectrometry-Based proteomics and network biology. Annu. Rev. Biochem. 81: 379–405.

    Article  CAS  Google Scholar 

  77. Angel, T. E. (2012) Mass spectrometry-based proteomics: Existing capabilities and future directions. Chem. Soc. Rev. 41: 3912–3928.

    Article  CAS  Google Scholar 

  78. Shen, Y. (2013) Immobilization of trypsin via reactive polymer grafting from magnetic nanoparticles for microwave-assisted digestion. J. Mat. Chem. B 1: 2260–2267.

    Article  CAS  Google Scholar 

  79. Sun, J. (2013) Novel superparamagnetic sanoparticles for trypsin immobilization and the application for efficient proteolysis. J. Chromatography B 942–943: 9–14.

    Article  Google Scholar 

  80. Qiao, L. (2008) A nanoporous reactor for efficient proteolysis. Chem. Europ. J. 14: 151–157.

    Article  CAS  Google Scholar 

  81. Yan, Y. (2013) Hierarchically ordered macro/mesoporous alumina nanoreactor with multi-functions in phosphoproteomics. Anal. Methods 5: 6572–6575.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Je Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, K., Yoo, Y.J. Recent progress in nanobiocatalysis for enzyme immobilization and its application. Biotechnol Bioproc E 19, 553–567 (2014). https://doi.org/10.1007/s12257-014-0173-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0173-7

Keywords

Navigation