Skip to main content
Log in

Mediator-free glucose/O2 biofuel cell based on a 3-dimensional glucose oxidase/SWNT/polypyrrole composite electrode

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, a mediator-free glucose/O2 bio-fuel cell was developed based on a 3-dimensional carbon nanomaterial/polypyrrole composite with glucose oxidase and tyrosinase as the anodic and cathodic catalysts, respectively. This mediator-free biofuel cell has the following merits: (1) the biocatalyst was unaffected by toxic mediators and (2) current generation is independent, because there is no problem associated with mediator leakage from the electrode. The carbon nanomaterial in this 3-dimensional composite was used not only as immobilization support for the biocatalyst, but also as an electron carrier. This would be advantageous for glucose oxidation on the bioanode and O2 reduction on the biocathode in the glucose/O2 biofuel cell. This biofuel cell showed enhanced power density and half-life compared to other glucose/O2 biofuel cells previously reported, producing 157.4 μW/cm3 with 1 mM glucose as fuel and 0.5 M NaCl as the electrolyte, at a cell voltage of +85 mV over 29 h with continuous 1 mM glucose feeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ieropoulos, I. A., J. Greenman, C. Melhuish, and J. Hart (2005) Comparative study of three types of microbial fuel cell. Enz. Microb. Technol. 37: 238–245.

    Article  CAS  Google Scholar 

  2. Habrioux, A., G. Merle, K. Servat, and K. B. Kokoh (2008) Concentric glucose/O2 biofuel cell. J. Electroanal. Chem. 622: 97–102.

    Article  CAS  Google Scholar 

  3. Arechederra, R. and S. D. Minteer (2008) Organelle-based biofuel cells: Immobilized mitochondria on carbon paper electrodes. Electrochim. Acta. 53: 6698–6703.

    Article  CAS  Google Scholar 

  4. Kim, J., H. Jia, and P. Wang (2006) Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv. 24: 296–308.

    Article  CAS  Google Scholar 

  5. Minteer, S. D., B. Y. Liaw, and M. J. Cooney (2007) Enzymebased biofuel cells. Curr. Opin. Biotechnol. 18: 228–234.

    Article  CAS  Google Scholar 

  6. Topcagic, S. and S. D. Minteer (2006) Development of a membraneless ethanol/oxygen biofuel cell. Electrochim. Acta 51: 2168–2172.

    Article  CAS  Google Scholar 

  7. Willner, I., V. Heleg-Shabtai, R. Blonder, and E. Katz (1996) Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes. J. Am. Chem. Soc. 118: 10321–10322.

    Article  CAS  Google Scholar 

  8. Zayats, M., E. Katz, and I. Willner (2002) Electrical contacting of flavoenzymes and NAD(P)+-dependent enzymes by reconstitution and affinity interactions on phenylboronic acid monolayers associated with Au-electrodes. J. Am. Chem. Soc. 124: 14724–14735.

    Article  CAS  Google Scholar 

  9. Fernando Patolsky, Yossi Weizmann, and Itamar Willner (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors 13. Angew. Chem. Int. Ed. 43: 2113–2117.

    Article  CAS  Google Scholar 

  10. Liu, Y. and S. Dong (2007) A biofuel cell harvesting energy from glucose-air and fruit juice-air. Biosens. Bioelectron. 23: 593–597.

    Article  Google Scholar 

  11. Ramanavicius, A., A. Kausaite, and A. Ramanaviciene (2008) Enzymatic biofuel cell based on anode and cathode powered by ethanol. Biosens. Bioelectron. 24: 761–766.

    Article  CAS  Google Scholar 

  12. Shiunchin C. Wang, Fan Yang, Manuel Silva, Anna Zarow, Yubing Wang, Zafar Igbal (2009) Membrane-less and mediatorfree enzymatic biofuel cell using carbon nanotube/porous silicon electrodes. Electrochem. Comm. 11: 34–37.

    Article  Google Scholar 

  13. Liu, Y. and S. Dong (2007) A biofuel cell with enhanced power output by grape juice. Electrochem. Comm. 9: 1423–1427.

    Article  CAS  Google Scholar 

  14. Gao, F., Y. Yan, L. Su, L. Wang, and L. Mao (2007) An enzymatic glucose/O2 biofuel cell: Preparation, characterization, and performance in serum. Electrochem. Comm. 9: 989–996.

    Article  CAS  Google Scholar 

  15. Brunel, L., J. Denele, K. Servat, and K. B. Kokoh (2007) Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell. Electrochem. Comm. 9: 331–336.

    Article  CAS  Google Scholar 

  16. Liu Deng, Li Shang, Yizhe Wang Tie Wang, Hongjun Chen, Shaojun Dong (2008) Multilayer structured carbon nanotubes/poly-l-lysine/laccase composite cathode for glucose/O2 biofuel cell. Electrochem. Comm. 10: 1012–1015.

    Article  Google Scholar 

  17. Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature 354: 56–58.

    Article  CAS  Google Scholar 

  18. Rahul Sen, Bin Zhao, Daniel Perea, Mikhail E. Itkis, Hui Hu, James Love, Elena Bekyarova, Robert C. Hadden (2003) Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 4: 459–463.

    Google Scholar 

  19. Nadine Wong Shi Kam, Theodore C. Jessop, Paul A. Wender, and Hongjie Dai (2004) Nanotube Molecular Transporter: Internalization of Carbon Nanotube-Protein Conjugates into Mammalian Cells. J. Am. Chem. Soc. 126: 6850–6851.

    Article  Google Scholar 

  20. Min, K. and Y. J. Yoo (2009) Amperometric detection of dopamine based on tyrosinase-SWNTs-Ppy composite electrode. Talanta. Volume 80,Issue 2, page 1007–1011.

    Article  CAS  Google Scholar 

  21. Sato, F., M. Togo, M. K. Islam, and T. Matsue (2005) Enzymebased glucose fuel cell using Vitamin K3-immobilized polymer as an electron mediator. Electrochem. Comm. 7: 643–647.

    Article  CAS  Google Scholar 

  22. Barriere, F., P. Kavanagh, and D. Leech (2006) A laccase-glucose oxidase biofuel cell prototype operating in a physiological buffer. Electrochim. Acta. 51: 5187–5192.

    Article  CAS  Google Scholar 

  23. Ivnitski, D., B. Branch, P. Atanassov, and C. Apblett (2006) Glucose oxidase anode for biofuel cell based on direct electron transfer. Electrochem. Comm. 8: 1204–1210.

    Article  CAS  Google Scholar 

  24. Shleev, S., A. Jarosz-Wilkolazka, A. Khalunina, and O. Morozova (2005) Direct electron transfer reactions of laccases from different origins on carbon electrodes. Bioelectrochemistry 67: 115–124.

    Article  CAS  Google Scholar 

  25. Wright, D. B., D. D. Banks, J. R. Lohman, J. L. Hilsenbeck, and L. M. Gloss (2002) The effect of salts on the activity and stability of Escherichia coli and haloferax volcanii dihydrofolate reductases. J. Mol. Biol. 323: 327–344.

    Article  CAS  Google Scholar 

  26. Bowers, E.M., L. O. Ragland, and L. D. Byers (2007) Salt effects on [beta]-glucosidase: pH-profile narrowing. Biochim. Biophys. Acta. 1774: 1500–1507.

    CAS  Google Scholar 

  27. Zebda, A., L. Renaud, M. Cretin, and F. Pichot (2009) A microfluidic glucose biofuel cell to generate micropower from enzymes at ambient temperature. Electrochem. Comm. 11: 592–595.

    Article  CAS  Google Scholar 

  28. Zheng, W., H. M. Zhou, Y. F. Zheng, and N. Wang (2008) A comparative study on electrochemistry of laccase at two kinds of carbon nanotubes and its application for biofuel cell. Chem.Phys. Lett. 457: 381–385.

    Article  CAS  Google Scholar 

  29. Asuri, P., S. S. Karajanagi, H. Yang, and T. J. Yim (2006) Increasing protein stability through control of the nanoscale environment. Langmuir 22: 5833–5836.

    Article  CAS  Google Scholar 

  30. Asuri, P., S. S. Bale, R. C. Pangule, and D. A. Shah (2007) Structure, function, and stability of enzymes covalently attached to single-walled carbon nanotubes. Langmuir 23: 12318–12321.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Je Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, K., Ryu, J.H. & Yoo, Y.J. Mediator-free glucose/O2 biofuel cell based on a 3-dimensional glucose oxidase/SWNT/polypyrrole composite electrode. Biotechnol Bioproc E 15, 371–375 (2010). https://doi.org/10.1007/s12257-009-3034-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-3034-z

Keywords

Navigation