Skip to main content
Log in

Immobilization of porcine pancreatic α-amylase on magnetic Fe2O3 nanoparticles: Applications to the hydrolysis of starch

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Enzymes play a pivotal role in catalyzing diverse reactions. However, their instability upon repetitive/prolonged use, as well as their inhibition by high substrates and product concentration, remains an area of concern. In this study, porcine pancreatic α-amylase was immobilized on magnetic Fe2O3 nanoparticles (Fe2O3-NPs) in order to hydrolyze starch. The magnetic nanoparticle bound enzymes retained 94% of their initial enzyme activity. X-ray diffraction and atomic force microscopy analyses showed that the prepared matrix had advantageous microenvironment and a large surface area for binding significant amounts of protein. Functional groups present in enzyme and support were monitored by Fourier transform infrared spectroscopy. Immobilized enzyme exhibited lowered pH optimum (pH 6.0) to a greater degree than its soluble counterpart (pH 7.0). Optimum temperature for the immobilized enzyme shifted towards higher temperatures. The immobilized enzyme was significantly more resistant to inactivation caused by various metal ions and chemical denaturants. Immobilized α-amylase hydrolyzed 92% starch in a batch process, after 8 h at 40°C; while the free enzyme could hydrolyze only 73% starch under similar experimental conditions. A reusability experiment demonstrated that the immobilized enzyme retained 83% of its original activity even after its 8th repeated use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bordbar, A. K., K. Omidiyan, and R. Hosseinzadeh (2005) Study on interaction of α-amylase from Bacillus subtilis with cetyl trimethyl ammonium bromide. Colloid. Surf. B: Bioint. 40: 67–71.

    Article  CAS  Google Scholar 

  2. Abd El-Ghaffar, M. A. and M. S. Hashem (2009) Immobilization of α-amylase onto chitosan and its amino acid condensation adducts. J. Appl. Polym. Sci. 112: 805–814.

    Article  CAS  Google Scholar 

  3. Akoh, C. C., S. W. Chang, G. C. Lee, and J. F. Shaw (2008) Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce. J. Agric. Food Chem. 56: 10445–104451.

    Article  CAS  Google Scholar 

  4. Husain, Q. (2010) β Galactosidases and their potential applications. Crit. Rev. Biotechnol. 30: 41–62.

    Article  CAS  Google Scholar 

  5. Husain, Q. (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: A review. Crit. Rev. Biotechnol. 26: 201–221.

    Article  CAS  Google Scholar 

  6. Mateo, C., O. Abian, R. Fernandez-Lafuente, and J. M. Guisan (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enz. Microb. Technol. 26: 509–515.

    Article  CAS  Google Scholar 

  7. Chen, B., M. E. Miller, and R. A. Gross (2007) Effects of porous polystyrene resin parameters on Candida antarctica lipase B adsorption, distribution, and polyester synthesis activity. Langmuir 23: 6467–6474.

    Article  CAS  Google Scholar 

  8. Kim, M. I., J. Kim, J. Lee, and H. Jia (2007) Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization. Biotechnol. Bioeng. 96: 210–218.

    Article  CAS  Google Scholar 

  9. Safarik, I. and M. Safarikova (2009) Magnetic nano and microparticles in biotechnology. Chem. Pap. 63: 497–505.

    Article  CAS  Google Scholar 

  10. Safarikova, M., L. Ptackova, I. Kibrikova, and I. Safarık (2005) Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells. Chemosphere 59: 831–835.

    Article  CAS  Google Scholar 

  11. Namdeo, M. and S. K. Bajpai (2009) Immobilization of α-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J. Mol. Catal. B: Enzym. 59: 134–139.

    Article  CAS  Google Scholar 

  12. Raming, T. P., A. J. Winnubst, C. M. van Kats, and A. P. Philipse (2002) The synthesis and magnetic properties of nanosized hematite (α-Fe2O3) particles. J. Colloid Int. Sci. 249: 346–350.

    Article  CAS  Google Scholar 

  13. Bernfield, P. (1955) Amylases α and β. pp. 149–158. In: S. P. Colowick and N. O. Kaplan (eds.). Methods in enzymol. Academic press, NY.

    Chapter  Google Scholar 

  14. Bradford, M. M. (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  15. Iyer, P. V. and L. Ananthanarayan (2008) Enzyme stability and stabilization-aqueous and non-aqueous environment. Proc. Biochem. 43: 1019–132.

    Article  CAS  Google Scholar 

  16. Kennedy, J. F. and M. Paterson (1993) Application of cellulosic fast flow column filters to protein immobilization and recovery. Polym. Int. 32: 71–81.

    Article  CAS  Google Scholar 

  17. Hasirci, N., S. Aksoy, and H. Tumturk (2006) Activation of poly (dimmer acid-co-alkyl polyamine) particles for covalent immobilization of α-amylase. Reac. Func. Polym. 66: 1546–1551.

    Article  CAS  Google Scholar 

  18. Mallikarjuna, N. N., S. K. Manohar, P. V. Kulkarni, A. Venkataraman, and T. M. Aminabhavi (2005) Novel high dielectric constant nanocomposites of polyaniline dispersed with Γ-Fe2O3 nanoparticles. J. Appl. Polym. Sci. 97: 1868–1874.

    Article  CAS  Google Scholar 

  19. Weng, L., L. Zhang, D. Ruan, L. Shi, and J. Xu (2004) Thermal gelation of cellulose in a NaOH/thiourea aqueous solution. Langmuir 20: 2086–2093.

    Article  CAS  Google Scholar 

  20. Konwarh, R., N. Karak, S. K. Rai, and A. K. Mukherjee (2009) Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase. Nanotechnol. 20: 225107–225117.

    Article  Google Scholar 

  21. Scaramuzzo, F. A., R. Salvati, B. Paci, A. Generosi, V. Rossi-Albertini, A. Latini, and M. Barteri (2009) Nanoscale in situ morphological study of proteins immobilized on gold thin films. J. Phys. Chem. B. 113: 15895–15899.

    Article  CAS  Google Scholar 

  22. Saal, K., V. Sammelselg, A. Lohmus, E. Kuusk, G. Raidaru, T. Rinken, and A. Rinken (2002) Characterization of glucose oxidase immobilization onto mica carrier by atomic force microscopy and kinetic studies. Biomol. Eng. 19: 195–199.

    Article  CAS  Google Scholar 

  23. Lei, C. H., Y. Shin, J. Liu, and E. J. Ackerman (2002) Entrapping enzyme in a functionalized nanoporous support. J. Am. Chem. Soc. 124: 11242–11243.

    Article  CAS  Google Scholar 

  24. Jackson, M. and H. H. Mantsch (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol. Biol. 30: 95–120.

    Article  CAS  Google Scholar 

  25. Krimm, S. and J. Bandekar (1986) Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Adv. Protein Chem. 38: 181–364.

    Article  CAS  Google Scholar 

  26. Roig, M. G, A. Slade, and J. F. Kennedy (1993) α-Amylase immobilized on plastic supports: Stabilities, pH and temperature profiles and kinetic parameters. Biomat. Artif. Cells Immob. Biotechnol. 21: 487–525.

    CAS  Google Scholar 

  27. Bayramoglu, G., M. Yilmaz, and M. Y. Arica (2004) Immobilization of thermostable α-amylase onto reactive membranes: Kinetics characterization and application to continuous starch hydrolysis. Food Chem. 84: 591–599.

    Article  CAS  Google Scholar 

  28. Arica, M. Y., V. Hasirci, and N. G. Alaeddinoglu (1995) Covalent immobilization of α-amylase onto pHEMA microspheres: Preparation and application to fixed bed reactor. Biomaterials 16: 761–768.

    Article  CAS  Google Scholar 

  29. Magri, M. L., M. V. Miranda, and O. Cascone (2005) Immobilization of soybean seed coat peroxidase on polyaniline: Synthesis optimization and catalytic properties. Biocatal. Biotrans. 23: 339–346.

    Article  CAS  Google Scholar 

  30. Lee, P. M., K. H. Lee, and S. Y. Siaw (1993) Covalent immobilization of aminoacrylase to alginate for L-phenylalanine production. J. Chem. Technol. Biotechnol. 58: 65–70.

    Article  CAS  Google Scholar 

  31. Ramesh, M. V. and B. K. Lonsane (1990) Effect of metal salts and protein modifying agents on activity of thermostable α-amylase produced by Bacillus lichiniformis M27 under solid state fermentation. Chem. Microb. Technol. Lebensm. 12: 129–136.

    CAS  Google Scholar 

  32. Lo, H., L. Lin, H. Chen, W. Hsu, and C. Chang (2001) Enzymatic properties of a SDS-resistant Bacillus sp. TS-23 α-amylase produced by recombinant Escherichia coli. Proc. Biochem. 36: 743–750.

    Article  CAS  Google Scholar 

  33. Makhatadze, G. I. and P. L. Privalov (1992) Protein interactions with urea and guanidinium chloride. A calorimetric study. J. Mol. Biol. 226: 491–505.

    Article  CAS  Google Scholar 

  34. Zhou, H. X. (2004) Protein folding and binding in confined spaces and in crowded solutions. J. Mol. Recognit. 17: 368–375.

    Article  CAS  Google Scholar 

  35. Tanriseven, A. and S. Dogan (2002) A novel method for the immobilization of β-galactosidase. Proc. Biochem. 38: 27–30.

    Article  CAS  Google Scholar 

  36. Yagar, H., F. Ertan, and B. Balkan (2008) Comparison of some properties of free and immobilized α-amylase by Aspergillus sclerotiorum in calcium alginate gel beads. Prep. Biochem. Biotechnol. 38: 13–23.

    Article  CAS  Google Scholar 

  37. Shewale, S. D. and A. B. Pandit (2007) Hydrolysis of soluble starch using Bacillus licheniformis α-amylase immobilized on superporous CELBEADS. Carbohyd. Res. 342: 997–1008.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qayyum Husain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.J., Husain, Q. & Azam, A. Immobilization of porcine pancreatic α-amylase on magnetic Fe2O3 nanoparticles: Applications to the hydrolysis of starch. Biotechnol Bioproc E 17, 377–384 (2012). https://doi.org/10.1007/s12257-011-0105-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0105-8

Keywords

Navigation