Skip to main content

Advertisement

Log in

Vulnerability to Sea-Level Rise Varies Among Estuaries and Habitat Types: Lessons Learned from a Network of Surface Elevation Tables in Puget Sound

  • Special Issue: Wetland Elevation Dynamics
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Estuarine systems that provide valuable ecosystem services to society and important foraging and rearing habitat for fish and wildlife species continue to undergo degradation. In Puget Sound, WA, as much as 70–80% of historic estuarine habitat has been lost to anthropogenic development, and continued losses are expected through the end of the twenty-first century due to rising sea levels. To evaluate whether Puget Sound’s estuarine habitats will keep pace with current and projected sea-level rise (SLR), we assessed vertical rates of elevation change from a regional network of surface elevation tables and marker horizons (SET-MH). Over the past two decades, SET-MH equipment has been installed throughout a variety of habitats in five Puget Sound estuaries: the Nisqually, Snohomish, Stillaguamish, and Skagit River estuaries, and Padilla Bay. These data provide a unique opportunity to assess elevation change and habitat resilience across a spatiotemporal and environmental gradient. We observed different rates of surface elevation change among estuaries and habitats (Nisqually = 4.64 ± 2.81 mm/year, Snohomish = 5.71 ± 5.83 mm/year, Stillaguamish = 12.82 ± 10.29 mm/year, Skagit = 16.13 ± 7.57 mm/year, Padilla =  − 1.25 ± 1.58 mm/year). The highest rates were found at restoring sites with regular sediment input in the Stillaguamish and Skagit estuaries, whereas rates were consistently negative at low elevation sites in sediment starved Padilla Bay. Many sites in Puget Sound appear to be keeping pace with current rates of relative SLR, and some areas are on track to exceed projected rates through the end of the century. These findings indicate that Puget Sound’s estuarine habitats can be resilient to rising tidal levels—as long as sediment delivery is maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Nisqually SET data are available as a ScienceBase data release at https://doi.org/10.5066/P9R0HL3R. All other data available upon request.

References

  • Allen, J.R., J.C. Cornwell, and A.H. Baldwin. 2021. Contributions of organic and mineral matter to vertical accretion in tidal wetlands across a Chesapeake Bay subestuary. Journal of Marine Science and Engineering 9: 751. https://doi.org/10.3390/jmse9070751.

    Article  Google Scholar 

  • Anderson, S.W., C.A. Curran, and E.E. Grossman. 2017. Suspended-sediment loads in the lower Stillaguamish River, Snohomish County, Washington, 2014–2015 US Geological Survey Open-File Report 2017–1066. Virginia, USA: Reston. https://doi.org/10.3133/ofr20171066.

    Book  Google Scholar 

  • Artigas, F.J., J. Grzyb, and Y. Yao. 2021. Sea level rise and marsh surface elevation change in the meadowlands of New Jersey. Wetlands Ecology and Management 29: 181–192. https://doi.org/10.1007/s11273-020-09777-2.

    Article  CAS  Google Scholar 

  • Bartz, K.K., M.J. Ford, T.J. Beechie, K.L. Fresh, G.R. Pess, R.E. Kennedy, M.L. Rowse, and M. Sheer. 2015. Trends in developed land cover adjacent to habitat for threatened salmon in Puget Sound, Washington. USA PLOS ONE 10: e0124415. https://doi.org/10.1371/journal.pone.0124415.

    Article  PubMed  CAS  Google Scholar 

  • Baustian, J.J., I.A. Mendelssohn, and M.W. Hester. 2012. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Global Change Biology 18: 3377–3382. https://doi.org/10.1111/j.1365-2486.2012.02792.x.

    Article  ADS  Google Scholar 

  • Beckett, L.H., A.H. Baldwin, and M.S. Kearney. 2016. Tidal marshes across a Chesapeake Bay subestuary are not keeping up with sea-level rise. PLoS ONE 11: e0159753. https://doi.org/10.1371/journal.pone.0159753.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blum, M., D. Rahn, B. Frederick, and S. Morón Polanco. 2023. Land loss in the Mississippi River Delta: Role of subsidence, global sea-level rise, and coupled atmospheric and oceanographic processes. Global and Planetary Change 222: 104048. https://doi.org/10.1016/j.gloplacha.2023.104048.

    Article  Google Scholar 

  • Boumans, R.M.J., and J.W. Day. 1993. High precision measurements of sediment elevation in shallow coastal areas using a sediment-erosion table. Estuaries 16: 375–380. https://doi.org/10.2307/1352509.

    Article  Google Scholar 

  • Boumans, R.M.J., J.W. Day, and G.P. Kemp. 1993. Measuring the effect of sediment fences for wetland creation and restoration in Louisiana. Coastal Zone 93: 1717–1725.

    Google Scholar 

  • Brophy, L.S., C.M. Greene, V.C. Hare, B. Holycross, A. Lanier, W.N. Heady, K. O’Connor, H. Imaki, T. Haddad, and R. Dana. 2019. Insights into estuary habitat loss in the western United States using a new method for mapping maximum extent of tidal wetlands. PLoS ONE 14: e0218558. https://doi.org/10.1371/journal.pone.0218558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bulthuis, D.A. 2010. The ecology of Padilla Bay Washington: an estuarine profile of a National Estuarine Research Reserve. Padilla Bay National Estuarine Research Reserve, Mt Vernon, Washington, USA: Report prepared for Washington State Department of Ecology.

    Google Scholar 

  • Burns, R. 1985. The shape and form of Puget Sound. Seattle, Washington, USA: University of Washington Press.

    Google Scholar 

  • Cadol, D., K. Engelhardt, A. Elmore, and G. Sanders. 2014. Elevation-dependent surface elevation gain in a tidal freshwater marsh and implications for marsh persistence. Limnology and Oceanography 59: 1065–1080. https://doi.org/10.4319/lo.2014.59.3.1065.

    Article  ADS  Google Scholar 

  • Cahoon, D.R. 2015. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries and Coasts 38: 1077–1084. https://doi.org/10.1007/s12237-014-9872-8.

    Article  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, B.C. Perez, B. Segura, R.D. Holland, C. Stelly, G. Stephenson, and P. Hensel. 2002. High-precision measurements of wetland sediment elevation: II. the rod surface elevation table. Journal of Sedimentary Research 72: 734–739. https://doi.org/10.1306/020702720734.

    Article  ADS  CAS  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, C.T. Roman, J. Schmit, and D.E. Skidds. 2019. Evaluating the relationship among wetland vertical development, elevation capital, sea-level rise, and tidal marsh sustainability. Estuaries and Coasts 42: 1–15. https://doi.org/10.1007/s12237-018-0448-x.

    Article  CAS  Google Scholar 

  • Cahoon, D.R., D.J. Reed, J.W. Day, J.C. Lynch, A. Swales, and R.R. Lane. 2020. Applications and utility of the surface elevation table–marker horizon method for measuring wetland elevation and shallow soil subsidence-expansion. Geo-Marine Letters 40: 809–815. https://doi.org/10.1007/s00367-020-00656-6.

    Article  ADS  CAS  Google Scholar 

  • Cahoon, D.R., K.L. McKee, and J.T. Morris. 2021. How plants influence resilience of salt marsh and mangrove wetlands to sea-level rise. Estuaries and Coasts 44: 883–898. https://doi.org/10.1007/s12237-020-00834-w.

    Article  CAS  Google Scholar 

  • Christiansen, T., P.L. Wiberg, and T.G. Milligan. 2000. Flow and sediment transport on a tidal salt marsh surface. Estuarine, Costal and Shelf Science 50: 315–331. https://doi.org/10.1006/ecss.2000.0548.

    Article  ADS  Google Scholar 

  • Curran, C.A., E.E. Grossman, C.S. Magirl, and J.R. Foreman. 2016a. Suspended sediment delivery to Puget Sound from the lower Nisqually River, Western Washington, July 2010–November 2011 US Geological Survey Scientific Investigations Report 2016–5062. Virginia, USA: Reston. https://doi.org/10.3133/sir20165062.

    Book  Google Scholar 

  • Curran, C.A., E.E. Grossman, M.C. Mastin, and R.L. Huffman. 2016b. Sediment load and distribution in the lower Skagit River, Skagit County, Washington US Geological Survey Scientific Investigations Report 2016–5106. Virginia, USA: Reston. https://doi.org/10.3133/sir20165106.

    Book  Google Scholar 

  • Czuba, J.A., C.S. Magirl, C.R. Czuba, E.E. Grossman, C.A. Curran, A.S. Gendaszek, and R.S. Dinicola. 2011. Sediment load from major rivers into Puget Sound and its adjacent waters US Geological Survey Fact Sheet 2011–3083. Virginia, USA: Reston. https://doi.org/10.3133/fs20113083.

    Book  Google Scholar 

  • Davis, M.J., I. Woo, and S.E.W. De La Cruz. 2019. Development and implementation of an empirical habitat change model and decision support tool for estuarine ecosystems. Ecological Modelling 410: 108722. https://doi.org/10.1016/j.ecolmodel.2019.108722.

    Article  Google Scholar 

  • Day, J.W., Jr., J. Rybczyk, F. Scarton, A. Rismondo, D. Are, and G. Cecconi. 1999. Soil accretionary dynamics, sea-level rise and the survival of wetlands in Venice Lagoon: A field and modelling approach. Estuarine, Coastal and Shelf Science 49: 607–628. https://doi.org/10.1006/ecss.1999.0522.

    Article  ADS  Google Scholar 

  • Drexler, J.Z., I. Woo, C.C. Fuller, and G. Nakai. 2019. Carbon accumulation and vertical accretion in a restored versus historic salt marsh in southern Puget Sound, Washington, United States. Restoration Ecology 27: 1117–1127. https://doi.org/10.1111/rec.12941.

    Article  Google Scholar 

  • Drexler, J.Z., M.J. Davis, I. Woo, and S.E.W. De La Cruz. 2020. Carbon sources in the sediments of a restoring vs. historically unaltered salt marsh. Estuaries and Coasts 43: 1345–1360. https://doi.org/10.1007/s12237-020-00748-7.

    Article  CAS  Google Scholar 

  • Emmett, R., R. Llansó, J. Newton, R. Thom, M. Hornberger, C. Morgan, C. Levings, A. Copping, and P. Fishman. 2000. Geographic signatures of North American West Coast estuaries. Estuaries 23: 765–792. https://doi.org/10.2307/1352998.

    Article  CAS  Google Scholar 

  • Feher, L.C., M.J. Osland, K.L. McKee, K.R.T. Whelan, C. Coronado-Molina, F.H. Skylar, K.W. Krauss, R.J. Howard, D.R. Cahoon, J.C. Lynch, L. Lamb-Wotton, T.G. Troxler, J.R. Conrad, G.H. Anderson, W.C. Vervaeke, T.J. Smith III., N. Cormier, A.S. From, and L. Allain. 2022. Soil elevation change in mangrove forests and marshes of the Greater Everglades: A regional synthesis of surface elevation table-marker horizon (SET-MH) data. Estuaries and Coasts. https://doi.org/10.1007/s12237-022-01141-2.

    Article  Google Scholar 

  • French, J. 2006. Tidal marsh sedimentation and resilience to environmental change: Exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems. Marine Geology 235: 119–136. https://doi.org/10.1016/j.margeo.2006.10.009.

    Article  ADS  Google Scholar 

  • French, J.R., T. Spencer, A.L. Murray, and N.S. Arnold. 1995. Geostatistical analysis of sediment deposition in two small tidal wetlands, Norfolk, U.K. Journal of Coastal Research 11: 308–321.

    Google Scholar 

  • Gedan, K.B., M.L. Kirwan, E. Wolanski, E.B. Barbier, and B.R. Silliman. 2011. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Climatic Change 106: 7–29. https://doi.org/10.1007/s10584-010-0003-7.

    Article  ADS  Google Scholar 

  • Giosan, L., J. Syvitski, S. Constantinescu, and J. Day. 2014. Climate change: Protect the world’s deltas. Nature 516: 31–33. https://doi.org/10.1038/516031a.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Grossman, E.E., A.W. Stevens, P. Dartnell, D. George, and D. Finlayson. 2020. Sediment export and impacts associated with river delta channelization compound estuary vulnerability to sea-level rise, Skagit River Delta, Washington, USA. Marine Geology 430: 106336. https://doi.org/10.1016/j.margeo.2020.106336.

    Article  Google Scholar 

  • Grossman, E.E., S.C. Crosby, A.W. Stevens, D.J. Nowacki, N.R. vanArendonk, and C.A. Curran. 2022. Assessment of vulnerabilities and opportunities to restore marsh sediment supply at Nisqually River Delta, west-central Washington US Geological Survey Open-File Report 2022–1088. Virginia, USA: Reston. https://doi.org/10.3133/ofr20221088.

    Book  Google Scholar 

  • Guo, Y., Y. Chen, B. Liao, B. Huang, F. Wu, and Z. Jiang. 2020. The effect of vegetation on surface elevation in coastal mangrove areas. Journal of Coastal Research 36: 600–607. https://doi.org/10.2112/JCOASTRES-D-19-00124.1.

    Article  Google Scholar 

  • Haaf, L., E. Burke Watson, T. Elsey-Quirk, K. Raper, A. Padeletti, M. Maxwell-Doyle, D. Kreeger, and D.J. Velinsky. 2022. Sediment accumulation, elevation change, and the vulnerability of tidal marshes in the Delaware Estuary and Barnegat Bay to accelerated sea level rise. Estuaries and Coasts 45: 413–427. https://doi.org/10.1007/s12237-021-00972-9.

    Article  Google Scholar 

  • Jankowski, K.L., T.E. Tornqvist, and A.M. Fernandes. 2017. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nature Communications 8: 14792. https://doi.org/10.1038/ncomms14792.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirwan, M.L., and J.P. Megonigal. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504: 53–60. https://doi.org/10.1038/nature12856.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37: L23401. https://doi.org/10.1029/2010GL045489.

    Article  ADS  Google Scholar 

  • Kirwan, M.L., S. Temmerman, E.E. Skeehan, G.R. Guntenspergen, and S. Fagherazzi. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6: 253–260. https://doi.org/10.1038/nclimate2909.

    Article  ADS  Google Scholar 

  • Liu, Z., S. Fagherazzi, and B. Cui. 2021. Success of coastal wetlands restoration is driven by sediment availability. Communications Earth & Environment 2: 44. https://doi.org/10.1038/s43247-021-00117-7.

    Article  ADS  Google Scholar 

  • Lynch, J.C., P. Hansel, and D.R. Cahoon. 2015. The surface elevation table and marker horizon technique: A protocol for monitoring wetland elevation dynamics. Natural Resource Report NPS/NCBN/NRR-2015/1078. National Park Service. https://pubs.er.usgs.gov/publication/70160049.

  • Marin-Diaz, B., T.J. Bouma, and E. Infantes. 2020. Role of eelgrass on bed-load transport and sediment resuspension under oscillatory flow. Limnology and Oceanography 65: 426–436. https://doi.org/10.1002/lno.11312.

    Article  ADS  Google Scholar 

  • Miller, I.M., H. Morgan, G. Mauger, T. Newton, R. Weldon, D. Schmidt, M. Welch, and E. Grossman. 2018. Projected sea level rise for Washington State—A 2018 Assessment. A collaboration of Washington Sea Grant, University of Washington Climate Impacts Group, University of Oregon, University of Washington, and US Geological Survey. Prepared for the Washington Coastal Resilience Project.

  • Mofjeld, H.O., and L.H. Larsen. 1984. Tides and tidal currents of the inland waters of western Washington. US Department of Commerce, NOAA Technical Memo ERL PMEL-56.

  • Moon, J.A., L.C. Feher, T.C. Lane, W.C. Vervaeke, M.J. Osland, D.M. Head, B.C. Chivoiu, D.R. Stewart, D.J. Johnson, J.B. Grace, K.L. Metzger, and N.M. Rankin. 2022. Surface elevation change dynamics in coastal marshes along the northwestern Gulf of Mexico: Anticipating effects of rising sea-level and intensifying hurricanes. Wetlands 42: 49. https://doi.org/10.1007/s13157-022-01565-3.

    Article  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea levels. Ecology 83: 2869–2877. https://doi.org/10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2.

    Article  Google Scholar 

  • Morris, J.T., D.C. Barber, J.C. Callaway, R. Chambers, S.C. Hagen, C.S. Hopkinson, B.J. Johnson, P. Megonigal, S.C. Neubauer, T. Troxler, and C. Wigand. 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth’s Future 4: 110–121. https://doi.org/10.1002/2015EF000334.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Mudd, S.M., S.M. Howell, and J.T. Morris. 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science 82: 377–389. https://doi.org/10.1016/j.ecss.2009.01.028.

    Article  ADS  CAS  Google Scholar 

  • National Research Council. 2012. Sea-level rise for the coasts of California, Oregon, and Washington: Past, present, and future. National Research Council of the National Academies: National Academies Press, Washington, D.C., USA.

    Google Scholar 

  • Nowacki, D.J., and E.E. Grossman. 2020. Sediment transport in a restored river-influenced Pacific Northwest estuary. Estuarine, Coastal and Shelf Science 242: 106869. https://doi.org/10.1016/j.ecss.2020.106869.

    Article  Google Scholar 

  • Peck, E.K., R.A. Wheatcroft, and L.S. Brophy. 2020. Controls on sediment accretion and blue carbon burial in tidal saline wetlands: Insights from the Oregon coast, USA. JGR Biogeosciences 125: e2019JG005464. https://doi.org/10.1029/2019JG005464.

    Article  Google Scholar 

  • Poppe, K.L., and J.M. Rybczyk. 2018. Carbon sequestration in a Pacific Northwest eelgrass (Zostera marina) meadow. Northwest Science 92: 80–91. https://doi.org/10.3955/046.092.0202.

    Article  Google Scholar 

  • Poppe, K.L., and J.M. Rybczyk. 2021. Tidal marsh restoration enhances sediment accretion and carbon accumulation in the Stillaguamish River estuary. Washington. PLOS ONE 16: e0257244. https://doi.org/10.1371/journal.pone.0257244.

    Article  PubMed  CAS  Google Scholar 

  • Poppe, K.L., and J.M. Rybczyk. 2022. Assessing the future of an intertidal seagrass meadow in response to sea level rise with a hybrid ecogeomorphic model of elevation change. Ecological Modelling 469: 109975. https://doi.org/10.1016/j.ecolmodel.2022.109975.

    Article  Google Scholar 

  • Potouroglou, M., J.C. Bull, K.W. Krauss, H.A. Kennedy, M. Fusi, D. Daffonchio, M.M. Mangora, M.N. Githaiga, K. Diele, and M. Huxham. 2017. Measuring the role of seagrasses in regulating sediment surface elevation. Scientific Reports 7: 11917. https://doi.org/10.1038/s41598-017-12354-y.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • R Development Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Ramirez, M. 2019. Tracking estuarine wetland restoration in Puget Sound: Reporting on the Puget Sound Estuaries Vital Sign Indicator. Puget Sound Partnership: University of Washington, Seattle, USA.

    Google Scholar 

  • Roner, M., A. D’Alpaos, M. Ghinassi, M. Marani, S. Silvestri, E. Franceschinis, and N. Realdon. 2016. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: Inferences from the Venice lagoon, Italy. Advances in Water Resources 93: 276–287. https://doi.org/10.1016/j.advwatres.2015.11.011.

    Article  ADS  CAS  Google Scholar 

  • Rybczyk, J.M., and D.R. Cahoon. 2002. Estimating the potential for submergence for two subsiding wetlands in the Mississippi River delta. Estuaries 25: 985–998. https://doi.org/10.1007/BF02691346.

    Article  Google Scholar 

  • Rybczyk, J.M., R. Gwozdz, S. Maxwell, and P. Kairis. 2005. Linking field and modeling studies to predict the effects of global climate change and hydrologic alterations on a National Estuarine Research Reserve Abstracts from 18th Biennial Conference of the Estuarine Research Federation. Virginia, USA: Norfolk.

    Google Scholar 

  • Rybczyk, J.M., J.W. Day, and A. Yáñez-Arancibia. 2022. Global climate change in estuarine systems. In Estuarine Ecology, 3rd eds., J.W. Day, W. Kemp, and A. Yáñez-Arancibia. USA: Wiley, New York, New York.

    Google Scholar 

  • Saintilan, N., K.E. Kovalenko, G. Guntenspergen, K. Rogers, J.C. Lynch, D.R. Cahoon, C.E. Lovelock, D.A. Friess, E. Ashe, K.W. Krauss, N. Cormier, T. Spencer, J. Adams, J. Raw, C. Ibanez, F. Scarton, S. Temmerman, P. Meire, T. Maris, K. Thorne, J. Brazner, G.L. Chmura, T. Bowron, V.P. Gamage, K. Cressman, C. Endris, C. Marconi, P. Marcum, K. St, W. Laurent, K.B. Reay, J.A. Garwood. Raposa, and N. Khan. 2022. Constraints on the adjustment of tidal marshes to accelerating sea level rise. Science 377: 523–527. https://doi.org/10.1126/science.abo7872.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Schile, L.M., J.C. Callaway, J.T. Morris, D. Stralberg, V.T. Parker, and M. Kelly. 2014. Modeling tidal marsh distribution with sea-level rise: Evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLoS ONE 9: 388760. https://doi.org/10.1371/journal.pone.0088760.

    Article  CAS  Google Scholar 

  • Simenstad, C.A., and J.R. Cordell. 2000. Ecological assessment criteria for restoring anadromous salmon habitat in Pacific Northwest Estuaries. Ecological Engineering 15: 283–302. https://doi.org/10.1016/S0925-8574(00)00082-3.

    Article  Google Scholar 

  • Simenstad, C.A., M. Ramirez, J. Burke, M. Logsdon, H. Shipman, C. Tanner, J. Toft, B. Craig, C. Davis, J. Fung, P. Bloch, K. Fresh, D. Myers, E. Iverson, A. Bailey, P. Schlenger, C. Kiblinger, P. Myre, W. Gerstel, and A. MacLennan. 2011. Historical change of Puget Sound shorelines Puget Sound nearshore ecosystem project change analysis Puget Sound Nearshore Report No 2011–01 Washington Department of Fish and Wildlife, Olympia, Washington, and US Army Corps of Engineers. Washington, USA: Seattle.

    Google Scholar 

  • Spencer, T., D.A. Friess, L. Moller, S.L. Brown, R.A. Garbutt, and J.R. French. 2012. Surface elevation change in natural and re-created intertidal habitats, eastern England, UK, with particular reference to Freiston Shore. Wetlands Ecology and Management 20: 9–33. https://doi.org/10.1007/s11273-011-9238-y.

    Article  Google Scholar 

  • Stralberg, D., M. Brennan, J.C. Callaway, J.K. Wood, L.M. Schile, D. Jongsomjit, M. Kelly, V.T. Parker, and S. Crooks. 2011. Evaluating tidal marsh sustainability in the face of sea-level rise: A hybrid modeling approach applied to San Francisco Bay. PLoS ONE 6: e27388. https://doi.org/10.1371/journal.pone.0027388.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Temmerman, S., G. Govers, S. Wartel, and P. Meire. 2003. Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands. Earth Surface Processes and Landforms 28: 739–755. https://doi.org/10.1002/esp.495.

    Article  ADS  Google Scholar 

  • Temmerman, S., G. Govers, S. Wartel, and P. Meire. 2004. Modelling estuarine variations in tidal marsh sedimentation: Response to changing sea level and suspended sediment concentrations. Marine Geology 212: 1–19. https://doi.org/10.1016/j.margeo.2004.10.021.

    Article  ADS  Google Scholar 

  • Temmerman, S., T.J. Bouma, G. Govers, and D. Lauwaet. 2005. Flow paths of water and sediment in a tidal marsh: Relations with marsh developmental stage and tidal inundation height. Estuaries 28: 338–352. https://doi.org/10.1007/BF02693917.

    Article  Google Scholar 

  • Thorne, K., G. MacDonald, G. Guntenspergen, R. Ambrose, K. Buffington, B. Dugger, C. Freeman, C. Janousek, L. Brown, J. Rosencranz, J. Holmquist, J. Smol, K. Hargan, and J. Takekawa. 2018. US Pacific coastal wetland resilience and vulnerability to sea-level rise Science Advances 4: eaao3270. https://doi.org/10.1126/sciadv.aao3270.

    Article  PubMed  Google Scholar 

  • Thorne, K., S. Jones, C. Freeman, K. Buffington, C. Janousek, and G. Guntenspergen. 2022. Atmospheric river storm flooding influences tidal marsh elevation building process. JGR Biogeosciences 127: e2021JG006592. https://doi.org/10.1029/2021JG006592.

    Article  Google Scholar 

  • van Proosdij, D., R.G.D. Davidson-Arnott, and J. Ollerhead. 2006. Controls on spatial patterns of sediment deposition across a macro-tidal salt marsh surface over single tidal cycles. Estuarine, Coastal and Shelf Science 69: 64–86. https://doi.org/10.1016/j.ecss.2006.04.022.

    Article  ADS  Google Scholar 

  • Vandenbruwaene, W., T. Maris, T.J.S. Cox, D.R. Cahoon, P. Meire, and S. Temmerman. 2011. Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: Comparison with a natural tidal marsh. Geomorphology 130: 115–126. https://doi.org/10.1016/j.geomorph.2011.03.004.

    Article  ADS  Google Scholar 

  • Walter, R.K., J.K. O’Leary, S. Vitousek, M. Taherkhani, C. Geraghty, and A. Kitajima. 2020. Large-scale erosion driven by intertidal eelgrass loss in an estuarine environment. Estuarine, Coastal and Shelf Science 243: 106910. https://doi.org/10.1016/j.ecss.2020.106910.

    Article  Google Scholar 

  • Wang, G., M. Wang, M. Jiang, X. Lyu, X. He, and H. Wu. 2017. Effects of vegetation type on surface elevation change in Liaohe River Delta wetlands facing accelerated sea level rise. Chinese Geographical Science 27: 810–817. https://doi.org/10.1007/s11769-017-0909-3.

    Article  Google Scholar 

  • Wasson, K., N.K. Ganju, Z. Defne, C. Endris, T. Elsey-Quirk, K.M. Throne, C.M. Freeman, G. Guntenspergen, D.J. Nowacki, and K.B. Raposa. 2019. Understanding tidal marsh trajectories: Evaluation of multiple indicators of marsh persistence. Environmental Research Letters 14: 124073. https://doi.org/10.1088/1748-9326/ab5a94.

    Article  ADS  Google Scholar 

  • Wood, S.N. 2017. Generalized additive models: An introduction with R, 2nd ed. New York, New York, USA: CRC Press. https://doi.org/10.1201/9781315370279.

    Book  Google Scholar 

  • Yang, S., C.T. Friedrichs, Z. Shi, P. Ding, J. Zhu, and Q. Zhao. 2003. Morphological response of tidal marshes, flats and channels of the Outer Yangtze River mouth to a major storm. Estuaries 26: 1416–1425. https://doi.org/10.1007/BF02803650.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the contributions of countless individuals who played a role in project planning, equipment installation and upkeep, data collection, and project input at SET-MH monitoring sites throughout Puget Sound. This includes, but is not limited to, biologists and technicians from the US Geological Survey Western Ecological Research Center (J.Y. Takekawa, K. Thorne, A. Goodman, C. Freeman, K. Turner, L Belleveau, L. Shakeri, and S. Blakely), US Fish and Wildlife Service (G. Nakai, R. Munes, D. Roster, M. Bailey, J. Barham, and J.E. Takekawa), Nisqually Indian Tribe (C. Ellings, W. Duval, E. Perez, and A. David), National Oceanic and Atmospheric Administration Northwest Fisheries Science Center (C. Rice, J. Hall, and B. Boyer), Tulalip Tribes (D. Robinson, M. Pouley, M. Abrahamse, and Z. Lamebull), Snohomish County (B. Gaddis, S. Baker, and M. Rustay), Western Washington University (D. Ball, A. Barber, R. Gwozdz, P. Kairis, K. Kuhlman, and S. Maxwell), Washington Department of Fish and Wildlife (L. Brokaw and C. Syms), and Padilla Bay National Estuarine Research Reserve (S. Yang and J. Apple). We also acknowledge Ron Thom, whose seminal research on coastal wetland sediment accretion in the Salish Sea inspired all the work that followed. Finally, we thank several anonymous reviewers for their insightful comments, which substantially improved this manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government. 

Funding

Funding for the installation and maintenance of SET-MH equipment was provided by EPA Tribal Assistant grant nos. PA-00J15001 awarded to the Nisqually Indian Tribe and PA-01J64601 awarded to the Tulalip Tribes, Washington State Estuary, and Salmon Restoration Program funds (Project #13-1583P), Washington Department of Ecology interagency agreement C1700136 awarded to WWU, USGS Students in Support of Native American Relations, USGS National Association of Geoscience Teachers, USGS Youth and Education in Science, NOAA Pacific Coastal Salmon Recovery Funds, NOAA Office for Coastal Management, Washington Sea Grant, The Nature Conservancy, and the Padilla Bay Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Rybczyk.

Ethics declarations

Conflict of Interest

The authors declare no competing interest.

Additional information

Communicated by Jessica R. Lacy

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 291 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, M.J., Poppe, K.L., Rybczyk, J.M. et al. Vulnerability to Sea-Level Rise Varies Among Estuaries and Habitat Types: Lessons Learned from a Network of Surface Elevation Tables in Puget Sound. Estuaries and Coasts (2024). https://doi.org/10.1007/s12237-024-01335-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12237-024-01335-w

Keywords

Navigation