Skip to main content
Log in

Elevation Dynamics Between Polders and the Natural Sundarbans of the Ganges-Brahmaputra Delta Plain

  • Special Issue: Wetland Elevation Dynamics
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The Ganges-Brahmaputra Delta (GBD) in Bangladesh exists at a nexus of stability and vulnerability, as the rivers annually carry ~ 800–1000 MT of sediment from the Himalayan Mountains, yet coastal poldering and sediment extraction within the rivers remove elevation capital from the low-lying delta plain. Recent research in the GBD has begun to unravel how the world’s largest fluvio-deltaic mangrove forest—the Sundarbans—is keeping pace with sea level rise (SLR); however, this is contingent on adequate sediment supply delivered to the platform during semi-diurnal tides and the seasonal monsoon. Little is known about the elevation dynamics within human-modified polders by comparison, other than an elevation deficit of 1–1.5 m exists. In this study, seasonal data from Rod Surface Elevation Tables (RSETs) installed within a polder in the southwest region (Polder 32) are compared to the Sundarbans. Over ~ 8 years, results show that surface elevation is gaining within the Sundarbans at a more significant rate (~ 58.4%), and this is due to the higher vertical accretion rates measured in the Sundarbans (~ 67%) from abundant sources of allochthonous material. Elevation gain in the polder, particularly close to the embankment, appears to be attributed to sediment supplied from eroded embankments and local sluice gates, in addition to seasonal subsurface clay swelling during the monsoon. Shallow subsidence within both study areas appears to take place seasonally, but with less delivery of new sediment, the rate of shallow subsidence is lower in the polder compared to the Sundarbans. Despite seasonal shallow subsidence, the elevation change is net positive in both study areas if taken as a whole; however, interior poldered regions exhibit net elevation loss. This comparison in change of elevation, vertical accretion, and shallow subsidence shows how human modification has drastically changed the natural processes. Furthermore, our results are compared to rates of relative and effective SLR, which show that the Sundarbans is keeping pace in this region, while Polder 32 is not. These results are vital to inform embankment mitigation and flood risk in this dynamic delta system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alam, M. 1996. Subsidence of the Ganges—Brahmaputra Delta of Bangladesh and associated drainage, sedimentation and salinity problems. In Sea-level rise and coastal subsidence, vol. 2, ed. J.D. Milliman and B.U. Haq. Coastal systems and continental margins, 169–192. Dordrecht: Springer. https://doi.org/10.1007/978-94-015-8719-8_9.

    Chapter  Google Scholar 

  • Allison, M.A., and E. Kepple. 2001. Modern sediment supply to the lower delta plain of the Ganges-Brahmaputra River in Bangladesh. Geo-Marine Letters 21: 66–74. https://doi.org/10.1007/s003670100069.

    Article  CAS  Google Scholar 

  • Auerbach, L.W., S.L. Goodbred, D.R. Mondal, C.A. Wilson, K.R. Ahmed, K. Roy, M.S. Steckler, C. Small, J.M. Gilligan, and B.A. Ackerly. 2015. Flood risk of natural and embanked landscapes on the Ganges-Brahmaputra tidal delta plain. Nature Climate Change 5: 153–157. https://doi.org/10.1038/nclimate2472.

    Article  Google Scholar 

  • Bain, R.L., R.P. Hale, and S.L. Goodbred. 2019. Flow reorganization in an anthropogenically modified tidal channel network: An example from the Southwestern Ganges-Brahmaputra-Meghna Delta. Journal of Geophysical Research: Earth Surface 124: 2141–2159. https://doi.org/10.1029/2018JF004996.

    Article  Google Scholar 

  • Bari, E., and S.E. Haque. 2022. Legal and illicit sand mining practice in Bangladesh: exploring supply chain and its value. Journal of Illicit Economies and Development 4 (1): 44–57. https://doi.org/10.31389/jied.149.

    Article  Google Scholar 

  • Becker, M., F. Papa, M. Karpytchev, C. Delebecque, Y. Krien, J.U. Khan, V. Ballu, et al. 2020. Water level changes, subsidence, and sea level rise in the Ganges-Brahmaputra-Meghna delta. Proceedings of the National Academy of Sciences of the United States of America 117: 1867–1876. https://doi.org/10.1073/pnas.1912921117.

    Article  CAS  Google Scholar 

  • Bomer, E.J., C.A. Wilson, R.P. Hale, A.N.M. Hossain, and F.M.A. Rahman. 2020. Surface elevation and sedimentation dynamics in the Ganges-Brahmaputra tidal delta plain, Bangladesh: Evidence for mangrove adaptation to human-induced tidal amplification. CATENA 187: 1–30. https://doi.org/10.1016/j.catena.2019.104312.

    Article  Google Scholar 

  • Boretti, A. 2020. Implications on food production of the changing water cycle in the Vietnamese Mekong Delta. Global Ecology and Conservation 22: e00989. https://doi.org/10.1016/j.gecco.2020.e00989.

    Article  Google Scholar 

  • Boretti, A. 2022. A revised procedure to compute future land losses in the delta of the Mekong River. Arabian Journal of Geosciences 15: 1–10. https://doi.org/10.1007/s12517-022-10713-2.

    Article  Google Scholar 

  • Brammer, H. 1990. Floods in Bangladesh: II. Flood mitigation and environmental aspects. The Geographical Journal 156 (2): 158–165. https://doi.org/10.2307/635323.

    Article  Google Scholar 

  • Brown, S., and R.J. Nicholls. 2015. Subsidence and human influences in mega deltas: The case of the Ganges–Brahmaputra–Meghna. Science of the Total Environment 527: 362–374.

    Article  Google Scholar 

  • Cahoon, D.R. 2006. A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts 29: 889–898. https://doi.org/10.1007/BF02798648.

    Article  Google Scholar 

  • Cahoon, D.R., and R.E. Turner. 1989. Accretion and canal impacts in a rapidly subsiding wetland. II. Feldspar Marker Horizon Technique: Estuaries 12: 260–268.

    Google Scholar 

  • Cahoon, D.R., D.J. Reed, J.W. Day, G.D. Steyer, R.M. Boumans, J.C. Lynch, D. McNally, and N. Latif. 1995. The influence of Hurricane Andrew on sediment distribution in Louisiana Coastal Marshes. Journal of Coastal Research, 280–294. http://www.jstor.org/stable/25736015.

  • Cahoon, D.R., J.C. Lynch, B.C. Perez, B. Segura, R.D. Holland, C. Stelly, G. Stephenson, and P. Hensel. 2002. High-precision measurements of wetland sediment elevation: II. The Rod Surface Elevation Table. Journal of Sedimentary Research 72: 734–739. https://doi.org/10.1306/020702720734.

    Article  CAS  Google Scholar 

  • Chen, G., W. Hong, X. Gu, K.W. Krauss, K. Zhao, H. Fu, L. Chen, M. Wang, and W. Wang. 2023. Coupling near-surface geomorphology with mangrove community diversity at the estuarine scale: A case study at Dongzhaigang Bay, China. Sedimentology 70: 31–47. https://doi.org/10.1111/sed.13030.

    Article  Google Scholar 

  • Cox, J.R., M. Paauw, J.H. Nienhuis, F.E. Dunn, E. van der Deijl, C. Esposito, M. Goichot, et al. 2022. A global synthesis of the effectiveness of sedimentation-enhancing strategies for river deltas and estuaries. Global and Planetary Change 214: 103796. https://doi.org/10.1016/J.GLOPLACHA.2022.103796.

    Article  Google Scholar 

  • Darby, S.E., F.E. Dunn, R.J. Nicholls, M. Rahman, and L. Riddy. 2015. A first look at the influence of anthropogenic climate change on the future delivery of fluvial sediment to the Ganges-Brahmaputra-Meghna delta. Environmental Sciences: Processes and Impacts 17: 1587–1600. https://doi.org/10.1039/c5em00252d.

    Article  CAS  Google Scholar 

  • Fu, H., W. Wang, W. Ma, and M. Wang. 2018. Differential in surface elevation change across mangrove forests in the intertidal zone. Estuarine, Coastal and Shelf Science 207: 203–208.

    Article  CAS  Google Scholar 

  • Giao, P.H., T.T. Thoang, L.X. Thuyen, and N.H.H. Vu. 2014. Geotechnical characterization of the subsoil profile underlying the land subsidence monitoring points in Southern Vietnam Delta. 9th International Symposium on Lowland Technology 1: 429–436.

    Google Scholar 

  • Glover, H.E., A.S. Ogston, A.T. Fricke, C.A. Nittrouer, C. Aung, T. Naing, and E.J. Lahr. 2023. Geophysical Research Letters - 2023 - Glover - Can unleveed agricultural fields in deltas keep pace with sea-level rise.pdf. Geophysical Research Letters 50: e2022GL101733. https://doi.org/10.1029/2022GL101733.

    Article  Google Scholar 

  • Hale, R., R. Bain, S. Goodbred, and J. Best. 2019a. Observations and scaling of tidal mass transport across the lower Ganges-Brahmaputra Delta plain: Implications for delta management and sustainability. Earth Surface Dynamics 7: 231–245. https://doi.org/10.5194/esurf-7-231-2019.

    Article  Google Scholar 

  • Hale, R.P., C.A. Wilson, E.J. Bomer, D. Reed, and J.D. Orford. 2019b. Seasonal variability of forces controlling sedimentation in the Sundarbans National Forest. Bangladesh. Frontiers in Earth Scince 7: 211. https://doi.org/10.3389/feart.2019.00211.

    Article  Google Scholar 

  • Hanggara, B.B., D. Murdiyarso, Y.R. Ginting, Y.L. Widha, G.Y. Panjaitan, and A.A. Lubis. 2021. Effects of diverse mangrove management practices on forest structure, carbon dynamics and sedimentation in North Sumatra, Indonesia. Estuarine, Coastal and Shelf Science 259: 107467. https://doi.org/10.1016/j.ecss.2021.107467.

    Article  CAS  Google Scholar 

  • Higgins, S.A., I. Overeem, K.G. Rogers, and E.A. Kalina. 2018. River linking in India: downstream impacts on water discharge and suspended sediment transport to deltas. Elementa: Science of the Anthropocene 6: 20. https://doi.org/10.1525/elementa.269.

    Article  Google Scholar 

  • Islam, S.N. 2019. Sundarbans a dynamic ecosystem: an overview of opportunities, threats and tasks. In The Sundarbans: a disaster-prone eco-region. Coastal Research Library, ed. H. Sen, Vol. 30. Springer, Cham. https://doi.org/10.1007/978-3-030-00680-8_2.

    Chapter  Google Scholar 

  • Jankowski, K., T. Törnqvist, and A. Fernandes. 2017. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nature Communications 8: 14792. https://doi.org/10.1038/ncomms14792.

    Article  CAS  Google Scholar 

  • Jarriel, T., L.F. Isikdogan, A. Bovik, and P. Passalacqua. 2020. System wide channel network analysis reveals hotspots of morphological change in anthropogenically modified regions of the Ganges Delta. Scientific Reports 10: 1–12. https://doi.org/10.1038/s41598-020-69688-3.

    Article  CAS  Google Scholar 

  • Keogh, M.E., and T.E. Törnqvist. 2019. Measuring rates of present-day relative sea-level rise in low-elevation coastal zones: a critical evaluation. Ocean Science 15 (1): 61–73. https://doi.org/10.5194/os-15-61-2019.

    Article  Google Scholar 

  • Knott, J.F., W.K. Nuttle, and H.F. Hemond. 1987. Hydrologic parameters of salt marsh peat. Hydrological Processes 1: 211–220. https://doi.org/10.1002/hyp.3360010208.

    Article  Google Scholar 

  • Krauss, K.W., K.L. McKee, C.E. Lovelock, D.R. Cahoon, N. Saintilan, R. Reef, and L. Chen. 2014. How mangrove forests adjust to rising sea level. New Phytologist 202 (1): 19–34.

    Article  Google Scholar 

  • Loucks, C., S.B. Meyer, M.A.A. Hossain, A. Barlow, and R.M. Chowdhury. 2010. Sea level rise and tigers : Predicted impacts to Bangladesh’s Sundarbans mangroves sea level rise and tigers: Predicted impacts to Bangladesh’s Sundarbans mangroves a letter. Climatic Change 98: 291–298. https://doi.org/10.1007/s10584-009-9761-5.

    Article  Google Scholar 

  • Lovelock, C.E., V. Bennion, A. Grinham, and D.R. Cahoon. 2011. The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of. Ecosystems 14: 745–757. https://doi.org/10.1007/s10021-011-9443-9.

    Article  CAS  Google Scholar 

  • Marion, C., E.J. Anthony, and A. Trentesaux. 2009. Short-term ( ≤ 2 yrs ) estuarine mudflat and saltmarsh sedimentation: High- resolution data from ultrasonic altimetery, rod surface-elevation table, and filter traps estuarine, coastal and shelf science short-term (2 yrs) estuarine mudflat and saltmarsh. Estuarine, Coastal and Shelf Science 83: 475–484. https://doi.org/10.1016/j.ecss.2009.03.039.

    Article  Google Scholar 

  • McIvor, A.L., T. Spencer, I. Möller, and M. Spalding. 2013. The response of mangrove soil surface elevation to sea level rise. Natural Coastal Protection Series: Report 3. Cambridge Coastal Research Unit Working Paper 42. Published by The Nature Conservancy and Wetlands International. 59 pages. ISSN 2050-7941.

  • Mckee, K.L., D.R. Cahoon, and I.C. Feller. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16: 545–556. https://doi.org/10.1111/j.1466-8238.2007.00317.x.

    Article  Google Scholar 

  • Minderhoud, P.S.J., L. Coumou, L.E. Erban, H. Middelkoop, E. Stouthamer, and E.A. Addink. 2018. The relation between land use and subsidence in the Vietnamese Mekong delta. Science of the Total Environment 634: 715–726. https://doi.org/10.1016/j.scitotenv.2018.03.372.The.

    Article  CAS  Google Scholar 

  • Nicholls, R.J., C.W. Hutton, A.N. Lázár, A. Allan, W.N. Adger, H. Adams, J. Wolf, M. Rahman, and M. Salehin. 2016. Integrated assessment of social and environmental sustainability dynamics in the Ganges-Brahmaputra-Meghna delta, Bangladesh. Estuarine, Coastal and Shelf Science. https://doi.org/10.1016/j.ecss.2016.08.017.

    Article  Google Scholar 

  • Nuttle, W.K. 1988. The extent of lateral water movement in the sediments of a New England Salt Marsh. Water Resources Research 24: 2077–2085. https://doi.org/10.1029/WR024i012p02077.

    Article  Google Scholar 

  • Olson, K.R. 2022. The Mekong Delta in Vietnam and Cambodia is subsiding and in need of remediation. Open Journal of Soil Science 12: 171–192. https://doi.org/10.4236/ojss.2022.125007.

    Article  Google Scholar 

  • Passalacqua, P., L. Giosan, S. Goodbred, and I. Overeem. 2021. Stable ≠ sustainable: delta dynamics versus the human need for stability. Earth’s Future. https://doi.org/10.1029/2021EF002121.

    Article  Google Scholar 

  • Paszkowski, A., S. Goodbred, E. Borgomeo, M.S.A. Khan, and J.W. Hall. 2021. Geomorphic change in the Ganges–Brahmaputra–Meghna delta. Nature Reviews Earth and Environment 2: 763–780. https://doi.org/10.1038/s43017-021-00213-4.

    Article  Google Scholar 

  • Peters, C.N., and G.M. Hornberger. 2020. A search for freshwater in the saline aquifer of coastal Bangladesh. Groundwater 58 (4): 645–660.

    Article  CAS  Google Scholar 

  • Pethick, J., and J.D. Orford. 2013. Rapid rise in effective sea-level in southwest Bangladesh: Its causes and contemporary rates. Global and Planetary Change 111: 237–245. https://doi.org/10.1016/j.gloplacha.2013.09.019.

    Article  Google Scholar 

  • Raff, J.L., S.L. Goodbred, J.L. Pickering, R.S. Sincavage, J.C. Ayers, M.S. Hossain, C.A. Wilson, C. Paola, M.S. Steckler, D.R. Mondal, J.-L. Grimaud, C.J. Grall, K.G. Rogers, K.M. Ahmed, S.H. Akhter, B.N. Carlson, E.L. Chamberlain, M. Dejter, J.M. Gilligan, ... L.A. Williams. 2023. Sediment delivery to sustain the Ganges-Brahmaputra delta under climate change and anthropogenic impacts. Nature Communications 14 (1): 2429. https://doi.org/10.1038/s41467-023-38057-9.

    Article  CAS  Google Scholar 

  • Rahman, M., M. Dustegir, R. Karim, A. Haque, R.J. Nicholls, S.E. Darby, H. Nakagawa, M. Hossain, F.E. Dunn, and M. Akter. 2018. Recent sediment flux to the Ganges-Brahmaputra-Meghna delta system. Science of the Total Environment 643: 1054–1064. https://doi.org/10.1016/j.scitotenv.2018.06.147.

    Article  CAS  Google Scholar 

  • Rogers, K., K.M. Wilton, and N. Saintilan. 2006. Vegetation change and surface elevation dynamics in estuarine wetlands of Southeast Australia. Estuarine, Coastal and Shelf Science 66 (3–4): 559–569.

    Article  Google Scholar 

  • Rogers, K.G., S.L. Goodbred, and D.R. Mondal. 2013. Estuarine, coastal and shelf science monsoon sedimentation on the ‘abandoned’ tide-influenced Ganges-Brahmaputra delta plain. Estuarine, Coastal and Shelf Science 131: 297–309. https://doi.org/10.1016/j.ecss.2013.07.014.

    Article  Google Scholar 

  • Rogers, K.G., and I. Overeem. 2017. Doomed to drown? Sediment dynamics in the human-controlled floodplains of the active Bengal Delta. Elementa Science of the Anthropocene. https://doi.org/10.1525/elementa.250.

    Article  Google Scholar 

  • Steckler, M.S., B. Oryan, C.A. Wilson, C. Grall, S.L. Nooner, D.R. Mondal, S.H. Akhter, S. DeWolf, and S.L. Goodbred. 2022. Synthesis of the distribution of subsidence of the lower Ganges-Brahmaputra Delta. Bangladesh. Earth-Science Reviews 224: 103887. https://doi.org/10.1016/j.earscirev.2021.103887.

    Article  Google Scholar 

  • Swales, A., P. Denys, V.I. Pickett, and C.E. Lovelock. 2016. Evaluating deep subsidence in a rapidly-accreting mangrove forest using GPS monitoring of surface-elevation benchmarks and sedimentary records. Marine Geology 380: 205–218.

    Article  CAS  Google Scholar 

  • Swales, A., and C.E. Lovelock. 2020. Estuarine, Coastal and shelf science comparison of sediment-plate methods to measure accretion rates in an estuarine mangrove forest (New Zealand). Estuarine, Coastal and Shelf Science 236: 106642. https://doi.org/10.1016/j.ecss.2020.106642.

    Article  Google Scholar 

  • Valentine, L., C.A. Wilson, and M.M. Rahman. 2022. Flood risk of embanked areas and potential use of dredge spoils as mitigation measures in the southwest region of the Ganges–Brahmaputra–Meghna Delta, Bangladesh. Earth Surface Processes and Landforms 47: 1073–1088. https://doi.org/10.1002/esp.5303.

    Article  Google Scholar 

  • Van Asselen, S., E. Stouthamer, and T.W. Van Asch. 2009. Effects of peat compaction on delta evolution: A review on processes, responses, measuring and modeling. Earth-Science Reviews 92 (1–2): 35–51.

    Article  Google Scholar 

  • van Maren, D.S., J.G.W. Beemster, Z.B. Wang, Z.H. Khan, R.A. Schrijvershof, and A.J.F. Hoitink. 2023. Tidal amplification and river capture in response to land reclamation in the Ganges-Brahmaputra Delta. CATENA 220: 106651. https://doi.org/10.1016/j.catena.2022.106651.

    Article  Google Scholar 

  • Webb, E.L., D.A. Friess, K.W. Krauss, D.R. Cahoon, G.R. Guntenspergen, and J. Phelps. 2013. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change 3 (5): 458–465.

    Article  Google Scholar 

  • Whelan, K.R., T.J. Smith, D.R. Cahoon, J.C. Lynch, and G.H. Anderson. 2005. Groundwater control of mangrove surface elevation: Shrink and swell varies with soil depth. Estuaries 28: 833–843.

    Article  Google Scholar 

  • Wilson, C., S. Goodbred, C. Small, J. Gilligan, S. Sams, B. Mallick, and R. Hale. 2017. Widespread infilling of tidal channels and navigable waterways in the human-modified tidal deltaplain of southwest Bangladesh. Elementa Science of the Anthropocene. https://doi.org/10.1525/elementa.263.

    Article  Google Scholar 

  • Wilson, C.A., and S.L. Goodbred. 2015. Construction and maintenance of the Ganges-Brahmaputra-Meghna Delta: Linking process, morphology, and stratigraphy. Annual Review of Marine Science 7: 67–88. https://doi.org/10.1146/annurev-marine-010213-135032.

    Article  Google Scholar 

  • Woodroffe, C.D., K. Rogers, K.L. McKee, C.E. Lovelock, I.A. Mendelssohn, and N. Saintilan. 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science 8: 243–266.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Bangladesh Institute of Water Modelling (IWM) for help in arranging field trips, and especially Mohammad Abdus Salam Sikder, Sanju Singha, Tawfeeqa Sikder, Tawheeda Sikder, Tanjina Ferdous Ira, Shahadat Hossain Biplab, and Abu Saeed Arman for their assistance in the field. Special thanks to Nazrul Islam Bachchu from Pugmark Tours and Travels, the crew of the M.V. Bawali and M.B. Mawali for boat travel and logistical support, and Dr. Abu Naser Hossain at the Khulna Division Department of Forestry for access permissions to the Sundarbans.

Funding

Funding was provided by NSF Awards OCE 16-00258, BCS 1716909, and BWDB contract CEIP-1/C3/C4 “Long Term Monitoring, Research and Analysis of Bangladesh Coastal Zone,” part of the Coastal Embankment Improvement Project, Phase-1 (CEIP-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sharmin Akter or Carol A. Wilson.

Additional information

Communicated by Mead Allison

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akter, S., Wilson, C.A., Bhuiyan, A.H. et al. Elevation Dynamics Between Polders and the Natural Sundarbans of the Ganges-Brahmaputra Delta Plain. Estuaries and Coasts (2024). https://doi.org/10.1007/s12237-024-01349-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12237-024-01349-4

Keywords

Navigation