Skip to main content
Log in

Flow paths of water and sediment in a tidal marsh: Relations with marsh developmental stage and tidal inundation height

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

This study provides new insights in the relative role of tidal creeks and the marsh edge in supplying water and sediments to and from tidal marshes for a wide range of tidal inundation cycles with different high water levels and for marsh zones of different developmental stage. Net import or export of water and its constituents (sediments, nutrients, pollutants) to or from tidal marshes has been traditionally estimated based on discharge measurements through a tidal creek. Complementary to this traditional calculation of water and sediment balances based on creek fluxes, we present novel methods to calculate water balances based on digital elevation modeling and sediment balances based on spatial modeling of surface sedimentation measurements. In contrast with spatial interpolation, the presented approach of spatial modeling accounts for the spatial scales at which sedimentation rates vary within tidal marshes. This study shows that for an old, high marsh platform, dissected by a well-developed creek network with adjoining levees and basins, flow paths are different for tidal inundation cycles with different high water levels: during shallow inundation cycles (high water level <0.2 m above the creek banks) almost all water is supplied via the creek system, while during higher inundation cycles (high water level >0.2 m) the percentage of water directly supplied via the marsh edge increases with increasing high water level. This flow pattern is in accordance with the observed decrease in sedimentation rates with increasing distance from creeks and from the marsh edge. On a young, low marsh, characterized by a gently seaward sloping topography, material exchange does not take place predominantly via creeks but the marsh is progressively flooded starting from the marsh edge. As a consequence, the spatial sedimentation pattern is most related to elevation differences and distance from the marsh edge. Our results imply that the traditional measurement of tidal creek fluxes may lead in many cases to incorrect estimations of net sediment or nutrient budgets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allen, J. R. L. 1994. A continuity-based sedimentological model for temperate-zone tidal salt marshes.Journal of the Geological Society 151:41–49.

    Article  Google Scholar 

  • Baltsavias, E. P. 1999. Airborne laser scanning: Basic relations and formulas.ISPRS Journal of Photogrammetry and Remote Sensing 54:199–214.

    Article  Google Scholar 

  • Bartholdy, J., C. Christiansen, andH. Kunzendorf. 2004. Long term variations in backbarrier saltmarsh deposition on the Skallingen peninsula, Danish Wadden Sea.Marine Geology 203:1–21.

    Article  Google Scholar 

  • Bayliss-Smith, T. P., R. Healey, R. Lailey, T. Spencer, andD. R. Stoddart. 1979. Tidal flow in salt marsh creeks.Estuarine Coastal and Shelf Science 9:235–255.

    Google Scholar 

  • Boon, J. D. 1978. Suspended solids transport in a salt marsh creek: An analysis of errors, p. 147–159.In B. J. Kjerfve (ed.), Estuarine Transport Processes. University of South Carolina Press, Columbia.

    Google Scholar 

  • Bouma, T. J., M. B. de Vries, E. Low, L. Kusters, P. M. J. Herman, I. C. Tanczos, A. Hesselink, S. Temmerman, P. Meire, andS. van Regenmortel. 2005. Hydrodynamic measurements on a mudflat and in salt marsh vegetation: Identifying general relationships for habitat characterisations.Hydrobiologia 540:259–274.

    Article  Google Scholar 

  • Claessens, J. andL. Meyvis. 1994. Overzicht van de tijwaarnemingen in het Zeescheldebekken gedurende het decennium 1981–1990. Ministerie van de Vlaamse Gemeenschap AWZ Afdeling Maritieme Schelde, Antwerpen, Belgium.

    Google Scholar 

  • Dame, R. F., J. D. Spurrier, T. M. Williams, B. Kjerfve, R. G. Zingmark, T. G. Wolaver, T. H. Chrzanowski, H. N. McKellar, andF. J. Vernberg. 1991. Annual material processing by a salt marsh-estuarine basin in South Carolina, USA.Marine Ecology Progress Series 72:153–166.

    Article  Google Scholar 

  • Dankers, N., M. Binsberger, K. Zegers, R. Laane, andM. R. van de Loeff. 1985. Transport of water, particulate and dissolved organic and inorganic matter between a salt marsh and the Ems-Dollard Estuary, The Netherlands.Estuarine Coastal and Shelf Science 19:143–165.

    Article  Google Scholar 

  • Davidson-Arnott, R. G. D., D. van Proosdij, J. Ollerhead, andL. Schostak. 2002. Hydrodynamics and sedimentation in salt marshes: Examples from a macrotidal marsh, Bay of Fundy.Geomorphology 48:209–231.

    Article  Google Scholar 

  • Eastman, R. 1994. IDRISI for Windows 2.0 Users Guide. Clark University, Worcester, Massachusetts.

    Google Scholar 

  • French, J. R. 2003. Airborne LiDAR in support of geomorphological and hydraulic modelling.Earth Surface Processes and Landforms 28:321–335.

    Article  Google Scholar 

  • French, J. R. andT. Spencer. 1993. Dynamics of sedimentation in a tide-dominated backbarrier salt marsh, Norfolk, U.K.Marine Geology 110:315–331.

    Article  Google Scholar 

  • French, J. R., T. Spencer, A. L. Murray, andN. S. Arnold. 1995. Geostatistical analysis of sediment deposition in two small tidal wetlands, Norfolk, U.K.Journal of Coastal Research 11:308–321.

    Google Scholar 

  • French, J. R. andD. R. Stoddart. 1992. Hydrodynamics of salt marsh creek systems: Implications for marsh morphological development and material exchange.Earth Surface Processes and Landforms 17:235–252.

    Article  Google Scholar 

  • Leonard, L. A. 1997. Controls on sediment transport and deposition in an incised mainland marsh basin, southeastern North Carolina.Wetlands 17:263–274.

    Article  Google Scholar 

  • Leonard, L. A., A. C. Hine, andM. E. Luther. 1995a. Surficial sediment transport and deposition processes in aJuncus-Roemerianus marsh, west-central Florida.Journal of Coastal Research 11:322–336.

    Google Scholar 

  • Leonard, L. A., A. C. Hine, M. E. Luther, R. P. Stumpf, andE. E. Weight. 1995b. Sediment transport processes in a west-central Florida open marine marsh tidal creek—The role of tides and extra-tropical storms.Estuarine Coastal and Shelf Science 41:225–248.

    Article  Google Scholar 

  • Measures, R. M. 1991. Laser Remote Sensing: Fundamentals and Applications. Krieger Publishing, Melbourne, Australia.

    Google Scholar 

  • Pethick, J. S. 1980. Velocity surges and asymmetry in tidal channels.Estuarine Coastal and Shelf Science 11:331–345.

    Google Scholar 

  • Reed, D. J. 1987. Temporal sampling and discharge asymmetry in salt marsh creeks.Estuarine Coastal and Shelf Science 25:459–466.

    Article  Google Scholar 

  • Reed, D. J. 1988. Sediment dynamics and deposition in a retreating coastal salt marsh.Estuarine Coastal and Shelf Science 26:67–79.

    Article  Google Scholar 

  • Reed, D. J. 1989. Patterns of sediment deposition in subsiding coastal marshes, Terrebonne Bay, Louisiana: The role of winter storms.Estuaries 12:222–227.

    Article  Google Scholar 

  • Reed, D. J., D. R. Stoddart, andT. P. Bayliss-Smith. 1985. Tidal flows and sediment budgets for a salt-marsh system, Essex, England.Vegetatio 62:375–380.

    Article  Google Scholar 

  • Settlemyre, J. L. andL. R. Gardner. 1977. Suspended sediment flux through a salt marsh drainage basin.Estuarine Coastal and Shelf Science 5:653–663.

    Google Scholar 

  • Stevenson, J. C., M. S. Kearney, andE. C. Pendleton. 1985. Sedimentation and erosion in a Chesapeake Bay brackish marsh system.Marine Geology 67:213–235.

    Article  Google Scholar 

  • Stevenson, J. C., G. W. Larry, andK. S. Michael. 1988. Sediment transport and trapping in marsh systems: Implications of tidal flux studies.Marine Geology 80:37–59.

    Article  Google Scholar 

  • Stoddart, D. R., D. J. Reed, andJ. R. French. 1989. Understanding salt marsh accretion, Scolt Head Island, north Norfolk, England.Estuaries 12:228–236.

    Article  Google Scholar 

  • Stumpf, R. P. 1983. The process of sedimentation on the surface of a salt marsh.Estuarine Coastal and Shelf Science 17:495–508.

    Article  Google Scholar 

  • Suk, N. S., Q. Guo, andN. P. Psuty. 1999. Suspended solids flux between salt marsh and adjacent bay: A long-term continuous measurement.Estuarine Coastal and Shelf Science 49:61–81.

    Article  Google Scholar 

  • Temmerman, S., G. Govers, S. Wartel, andP. Meire. 2003. Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands.Earth Surface Processes and Landforms 28:739–755.

    Article  Google Scholar 

  • van Damme, S., B. de Winder, T. Ysebaert, andP. Meire. 2001. Het ‘bijzondere’ van de Schelde: De abiotiek van het Scheldeestuarium.De Levende Natuur 102:37–39.

    Google Scholar 

  • van Heerd, R. M. andR. J. van’t Zand. 1999. Productspecificatie Actueel Hoogtebestand Nederland. Rijkswaterstaat Meetkundige Dienst, Delft, The Netherlands.

    Google Scholar 

  • Wang, F. C., T. S. Lu, andW. B. Sikora. 1993. Intertidal marsh suspended sediment transport processes, Terrebonne Bay, Louisiana, U.S.A.Journal of Coastal Research 9:209–220.

    Google Scholar 

  • Ward, L. G. 1981. Suspended-material transport in marsh tidal channels, Kiawah Island, South Carolina.Marine Geology 40:139–154.

    Article  Google Scholar 

  • Webb, K. L., R. Wetzel, T. G. Wolaver, andJ. C. Zieman. 1983. Tidal exchange of nitrogen and phosphorus between a mesohaline vegetated marsh and the surrounding estuary in the lower Chesapeake Bay.Estuarine Coastal and Shelf Science 16:321–332.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Temmerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temmerman, S., Bouma, T.J., Govers, G. et al. Flow paths of water and sediment in a tidal marsh: Relations with marsh developmental stage and tidal inundation height. Estuaries 28, 338–352 (2005). https://doi.org/10.1007/BF02693917

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02693917

Keywords

Navigation