Skip to main content
Log in

Quasilinear Schrödinger Equations With Stein-Weiss Type Convolution and Critical Exponential Nonlinearity in \({\mathbb {R}}^N\)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this article, we investigate the existence of positive solutions to the following class of quasilinear Schrödinger equations involving Stein-Weiss type convolution

$$\begin{aligned} \left\{ \begin{array}{l} {-}\Delta _N u {-}\Delta _N (u^{2})u +V(x)|u|^{N-2}u= \left( \displaystyle \int _{\mathbb {R}^N}\frac{F(y,u)}{|y|^\beta |x-y|^{\mu }}~dy\right) \displaystyle \frac{f(x,u)}{|x|^\beta } \; \;\;\;\text { in}\; {\mathbb {R}}^N, \end{array} \right. \end{aligned}$$

where \(N\ge 2, 0<\mu <N,\, \beta \ge 0,\) and \(2\beta +\mu < N.\) The potential \(V:{\mathbb {R}}^N\rightarrow {\mathbb {R}}\) is a continuous function satisfying \(0<V_0\le V(x)\) for all \(x\in {\mathbb {R}}^N\) and some suitable assumptions. The nonlinearity \(f:{\mathbb {R}}^N\times \mathbb {R}\rightarrow {\mathbb {R}}\) is a continuous function with critical exponential growth in the sense of the Trudinger-Moser inequality and \(F(x,s)=\int _{0}^s f(x,t)dt\) is the primitive of f.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equation. Z. Phys., B 37, 83–87 (1980)

  2. Bass, F., Nasanov, N.N.: Nonlinear electromagnetic-spin waves. Phys. Rep. 189, 165–223 (1990)

    Article  Google Scholar 

  3. Kurihara, S.: Large-amplitude quasi-solitons in superfluids films. J. Phys. Soc. Japan 50, 3262–3267 (1981)

    Article  Google Scholar 

  4. Ritchie, B.: Relativistic self-focusing and channel formation in laser-plasma interactions. Phys. Rev. E 50, 687–689 (1994)

    Article  Google Scholar 

  5. Liu, J.Q., Wang, Y.Q., Wang, Z.Q.: Solutions for quasilinear Schrödinger equations via the Nehari method. Comm. Partial Differ. Eqs. 29, 879–901 (2004)

    Article  Google Scholar 

  6. Liu, J.Q., Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equations. I. Proc. Amer. Math. Soc. 131, 441–448 (2003)

    Article  Google Scholar 

  7. Ruiz, D., Siciliano, G.: Existence of ground states for a modified nonlinear Schrödinger equation. Nonlinearity 23, 1221–1233 (2010)

    Article  MathSciNet  Google Scholar 

  8. Liu, Q., Liu, X.Q., Wang, Z.Q.: Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method. Comm. Partial Differ. Eqs. 39, 2216–2239 (2014)

    Article  MathSciNet  Google Scholar 

  9. Liu, X.Q., Liu, J.Q., Wang, Z.Q.: Quasilinear elliptic equations with critical growth via perturbation method. J. Differ. Eqs. 254, 102–124 (2013)

    Article  MathSciNet  Google Scholar 

  10. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. 56, 213–226 (2004)

    Article  MathSciNet  Google Scholar 

  11. do Ó, J.M., Miyagaki, O.H., Soares, S.H.M.: Soliton solutions for quasilinear Schrödinger equations: the critical exponential case. Nonlinear Anal. 67, 3357–3372 (2007)

    Article  MathSciNet  Google Scholar 

  12. do Ó, J.M., Miyagaki, O.H., Soares, S.H.M.: Soliton solutions for quasilinear Schrödinger equations with critical growth. J. Differ. Eqs. 248, 722-744 (2010)

  13. Jeanjean, L., Luo, T.J., Wang, Z.Q.: Multiple normalized solutions for quasi-linear Schrödinger equations. J. Differ. Eqs. 259, 3894–3928 (2015)

    Article  Google Scholar 

  14. Stein, E.M., Weiss, G.: Fractional integrals on \(n\)-dimensional Euclidean space. J. Math. Mech. 7, 503–514 (1958)

    MathSciNet  Google Scholar 

  15. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics. AMS, Providence, Rhode island (2001)

    Google Scholar 

  16. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    Book  Google Scholar 

  17. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Modern Phys. 71, 463 (1999)

    Article  Google Scholar 

  18. Penrose, R.: Quantum computation, entanglement and state reduction. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 356, 1927–1939 (1998)

  19. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard nonlinear equation. Studies Appl. Math., 57, 93-105 (1976/77)

  20. Lions, P.L.: The concentration compactness principle in the calculus of variations part-I. Rev. Mat. Iberoamericana 1, 185–201 (1985)

    Google Scholar 

  21. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Commun. Contemp. Math. 17, 1550005 (2015)

    Article  MathSciNet  Google Scholar 

  22. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Amer. Math. Soc. 367, 6557–6579 (2015)

    Article  MathSciNet  Google Scholar 

  23. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties, decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  24. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 19, 773–813 (2017)

    Article  MathSciNet  Google Scholar 

  25. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1971)

    Article  MathSciNet  Google Scholar 

  26. Cao, D.: Nontrivial solution of semilinear elliptic equations with critical exponent in \({\mathbb{R} }^2\). Comm. Partial Differ. Eqs. 17, 407–435 (1992)

    Article  Google Scholar 

  27. do Ó, J.M.: \(N\)-Laplacian equations in \(\mathbb{R}^N\) with critical growth. Abstract Appl. Anal. 2, 301–315 (1997)

  28. Adimurthi, A.: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17, 393–413 (1990)

    MathSciNet  Google Scholar 

  29. de Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in \({\mathbb{R} }^2\) with nonlinearities in the critical growth range. Calc. Var. Partial Diff. Eqs. 3(2), 139–153 (1995)

    Article  Google Scholar 

  30. Deng, Y., Peng, S., Wang, J.: Nodal Solutions for a Quasilinear Elliptic Equation Involving the p-Laplacian and Critical Exponents. Adv. Nonlinear Stud. 18, 17–40 (2018)

    Article  MathSciNet  Google Scholar 

  31. Moameni, A.: Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in \({\mathbb{R} }^N\). J. Differ. Eqs. 229, 570–587 (2006)

    Article  Google Scholar 

  32. Wang, Y., Yang, J., Zhang, Y.: Quasilinear elliptic equations involving the \(N\)-Laplacian with critical exponential growth in \({\mathbb{R} }^N\). Nonlinear Anal. 79, 6157–6169 (2009)

    Article  Google Scholar 

  33. de Souza, M., Severo, U.B., Vieira, G.F.: On a nonhomogeneous and singular quasilinear equation involving critical growth in \({\mathbb{R} }^2\). Comput. Math. Appl. 74, 513–531 (2017)

    Article  MathSciNet  Google Scholar 

  34. de Souza, M., Severo, U.B., Vieira, G.F.: Solutions for a class of singular quasilinear equations involving critical growth in \(\mathbb{R}^2\). Math. Nachr. 1–21 (2022)

  35. Alves, C.O., Cassani, D., Tarsi, C., Yang, M.: Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \({\mathbb{R} }^2\). J. Differ. Eqs. 261, 1933–1972 (2016)

    Article  Google Scholar 

  36. Arora, R., Giacomoni, J., Mukherjee, T., Sreenadh, K.: \(n\)-Kirchhoff-Choquard equations with exponential nonlinearity. Nonlinear Anal. 186, 113–144 (2019)

    Article  MathSciNet  Google Scholar 

  37. Biswas, R., Goyal, S., Sreenadh, K.: Quasilinear Choquard equations involving N-Laplacian and critical exponential nonlinearity. Math. Methods Appl. Sci. 45, 9483–9503 (2022)

    Article  MathSciNet  Google Scholar 

  38. Arora, R., Giacomoni, J., Mukherjee, T., Sreenadh, K.: Polyharmonic Kirchhoff problems involving exponential non-linearity of Choquard type with singular weights. Nonlinear Anal. 196, 111779 (2020)

    Article  MathSciNet  Google Scholar 

  39. Du, L., Gao, F., Yang, M.: On elliptic equations with Stein-Weiss type convolution parts, (2022), arxiv:1810.11759

  40. Biswas, R., Goyal, S., Sreenadh, K.: Multiplicity results for \( p \)-Kirchhoff modified Schrödinger equations with Stein-Weiss type critical nonlinearity in \({\mathbb{R} }^ N\). Differ. Integral Eqs. 36, 247–288 (2023)

    Google Scholar 

  41. Melgaard, M., Yang, M., Zhou, X.: Regularity, symmetry and asymptotic behaviour of solutions for some Stein-Weiss-type integral systems. Pacific J. Math. 317, 153–186 (2022)

    Article  MathSciNet  Google Scholar 

  42. Su, Y.: Fractional p-Laplacian Problem with Critical Stein-Weiss Type Term. J. Geom. Anal. 33, 160 (2023)

    Article  MathSciNet  Google Scholar 

  43. Yang, M., Rădulescu, V.D., Zhou, X.: Critical Stein-Weiss elliptic systems: symmetry, regularity and asymptotic properties of solutions. Calc. Var. Partial Differ. Eqs. 61, 109 (2022)

    Article  MathSciNet  Google Scholar 

  44. Adimurthi, Yang, Y.: An Interpolation of Hardy Inequality and Trudinger-Moser Inequality in \(\mathbb{R}^N\) and Its Applications, Int. Math. Res. Not., 2010, 2394–2426 (2009)

  45. do Ó, J.M.: Semilinear Dirichlet problems for the \(N\)-Laplacian in \(\mathbb{R}^N\) with nonlinearities in critical growth range. Diff. Integral Equ. 5, 967-979 (1996)

  46. Adimurthi, Sandeep, K.: A singular Moser-Trudinger embedding and its applications, Nonlinear Differ. Equ. Appl. NODEA 13, 585–603 (2007)

  47. Severo, U.B.: Existence of weak solutions for quasilinear elliptic equations involving the \(p\)-Laplacian. Electron. J. Differ. Eqs. 56, 1–16 (2008)

    Google Scholar 

  48. Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Universitext Springer, New York (2011)

    Book  Google Scholar 

  49. Guedda, M., Veron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13, 879–902 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author would like to thank the Science and Engineering Research Board, Department of Science and Technology, Government of India for the financial support under the grant SPG/2022/002068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sreenadh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we prove the generalized Pohozaev identity for the following quasilinear equation:

figure b

where \(1<p\le N,\) \(0<\mu <N, \beta \ge 0,\) and \(2\beta +\mu \le N.\) The nonlinearity \(f:{\mathbb {R}}^N\times {\mathbb {R}}\rightarrow {\mathbb {R}}\) is a continuous function and \(F(x,s)=\int _{0}^s f(x,t)dt\) is the primitive of f. Similar results for the semilinear Choquard equations with Laplacian operator, readers are referred to [23, 39].

Proposition 6.1

Let \(w\in W^{1,p}({\mathbb {R}}^N)\cap L_{loc}^\infty ({\mathbb {R}}^N) \) be a weak solution to problem (\(Q_{*}\)). Then

$$\begin{aligned}&\frac{(N-p)}{p}\int _{{\mathbb {R}}^N} |\nabla w|^p\;dx+\frac{N}{p} \int _{{\mathbb {R}}^N} |h(w)|^p dx\\&\quad \quad +\frac{(2N-\mu -2\beta )}{2}\int _{{{\mathbb {R}}^N}}\left( \int _{{\mathbb {R}^N}} \frac{F(y,h(w))}{|y|^\beta |x-y|^\mu }dy\right) \frac{F(x,h(w))}{|x|^\beta }dx=0. \end{aligned}$$

Proof

Using the idea of [49], let \(w_{\epsilon }\) be the classical solution in \(C^{3}_{loc}({\mathbb {R}}^N{\setminus } \{0\})\) of

$$\begin{aligned} \left\{ \begin{array}{l} -\text {div}(\epsilon +|\nabla w_\epsilon |^2)^{\frac{p-2}{2}} w_{\epsilon } +|h(w_\epsilon )|^{p-2}h(w_\epsilon )h'(w_\epsilon )\\ \quad = \left( \displaystyle \int _{\Omega }\frac{F(y, h(w_\epsilon ))}{|y|^\beta |x-y|^{\mu }}~dy\right) \frac{f(x, h(w_\epsilon ))}{|x|^\beta } h'(w_\epsilon )\; \;\;\;\text { in}\; {\mathbb {R}}^N. \end{array} \right. \end{aligned}$$

Then \(w_{\epsilon }\) is bounded in \(C^{1,\theta }({\mathbb {R}}^N{\setminus } \{0\})\) independently of \(\epsilon \in (0,1]\) and converges to w in \(C^{1,{\tilde{\theta }}}({\mathbb {R}}^N{\setminus } \{0\})\) for any \(\theta < {{\tilde{\theta }}}\) as \(\epsilon \rightarrow 0\). For \(0<{\textrm{r}}<{\textrm{R}}\), define \(\phi _{r,R}\in C_{c}^{\infty }({\mathbb {R}}^N)\) with \(0\le \phi _{r,R}\le 1\), \(\phi _{r,R}(x)=0\) in \(|x|<\frac{r}{2}\) and \(\phi _{r,R}(x)=1\) on \(r<|x|< R\) with \(|\nabla \phi _{r,R}(x)|<\frac{c}{R}\). By testing the equation against the function \(\psi _{r, R}(x)= \phi _{r,R} (x \cdot \nabla w_\epsilon (x))\) and integrate over \({\mathbb {R}}^N\), we have

$$\begin{aligned}&\int _{{\mathbb {R}}^N} (\epsilon +|\nabla w_{\epsilon }|^2)^{\frac{p-2}{2}}\nabla w_{\epsilon }\cdot \nabla \psi _{r,R} dx + \int _{{\mathbb {R}}^N} |h(w_\epsilon )|^{p-2}h(w_\epsilon )h'(w_\epsilon ) \psi _{r,R} dx\\&\quad = \int _{\mathbb {R}^N}\left( \int _{\mathbb {R}^N}\frac{F(y,h(w_\epsilon ))}{|y|^\beta |x-y|^{\mu }}dy\right) \frac{f(x,h(w_\epsilon ))}{|x|^\beta } h'(w_\epsilon ) \psi _{r,R}(x) dx. \end{aligned}$$

Now we compute for every \(R>r>0\),

$$\begin{aligned}&\int _{{\mathbb {R}}^N} |h(w_\epsilon )|^{p-2} h(w_\epsilon )h'(w_\epsilon ) \psi _{r,R}(x) dx\\&\quad = \int _{{\mathbb {R}}^N} |h(w_\epsilon )|^{p-2} h(w_\epsilon ) h'(w_{\epsilon }) \phi _{r,R}(x) x. \nabla w_{\epsilon }(x) dx \\&\quad = \int _{{\mathbb {R}}^N} \phi _{r,R}(x) x. \nabla \left( \frac{|h(w_\epsilon )|^p}{p}\right) (x) dx\\&\quad = - \int _{{\mathbb {R}}^N} (N \phi _{r,R}(x)+ \lambda x\cdot \nabla \phi _{r,R}) \frac{|h(w_\epsilon )|^p}{p} dx. \end{aligned}$$

Letting \(\epsilon \rightarrow 0\), \(r \rightarrow 0\) and \(R\rightarrow \infty \), we obtain

$$\begin{aligned} \int _{{\mathbb {R}}^N} |h(w_\epsilon )|^{p-2} h(w_{\epsilon })h'(w_\epsilon )\psi _{r,R}(x) dx \rightarrow -\frac{N}{p} \int _{{\mathbb {R}}^N } |h(w)|^p dx, \end{aligned}$$

thanks to Lebesgue’s dominated convergence Theorem. Next, we have

$$\begin{aligned}&\int _{{\mathbb {R}}^N} |(\epsilon +|\nabla w_{\epsilon }(x)|^2)^{\frac{p-2}{2}} \nabla w_{\epsilon }(x)\cdot \nabla \psi _{r,R}(x) dx\\&\quad = \int _{{\mathbb {R}}^N} (\epsilon +|\nabla w_{\epsilon }(x)|^2)^{\frac{p-2}{2}} \nabla w_{\epsilon }(x) \nabla (\phi _{r,R}(x) x. \nabla w_{\epsilon }(x)) dx \\&\quad = \int _{{\mathbb {R}}^N} \phi _{r,R}(x) (\epsilon + |\nabla w_{\epsilon }|^2)^{\frac{p-2}{2}} |\nabla w_{\epsilon }(x)|^p - \frac{N}{p}\int _{{\mathbb {R}}^N} \phi _{r,R}(x) (\epsilon + |\nabla w_{\epsilon }|^2)^{\frac{p}{2}}\\&\quad \quad - \int _{{\mathbb {R}}^N} x. \nabla \phi _{r,R}(x) (\epsilon + |\nabla w_{\epsilon }|^2)^{\frac{p}{2}} dx. \end{aligned}$$

Similarly, taking \(\epsilon \rightarrow 0\) in the left hand side of the last relation,

$$\begin{aligned}&\int _{{\mathbb {R}}^N} |(\epsilon +|\nabla w_{\epsilon }|^2)^{\frac{p-2}{2}} \nabla w_{\epsilon }(x)\cdot \nabla \psi _{r,R}(x) dx\\&\quad \rightarrow - \int _{{\mathbb {R}}^N} ((N-p) \phi _{r,R}(x)+ x\cdot \nabla \phi _{r,R}( x)) \frac{|\nabla w(x)|^p}{p} dx \end{aligned}$$

and using this,

$$\begin{aligned}{} & {} \lim _{r \rightarrow 0}\lim _{R\rightarrow \infty } \int _{{\mathbb {R}}^N}\\{} & {} |(\epsilon +|\nabla w_{\epsilon }(x)|^2)^{\frac{p-2}{2}} \nabla w_{\epsilon }(x)\cdot \nabla \psi _{r,R}(x) dx = -\frac{N-p}{p} \int _{{\mathbb {R}}^N } |\nabla w|^p dx. \end{aligned}$$

Finally, we get

$$\begin{aligned}&\int _{{{\mathbb {R}}^N}}\left( \int _{{{\mathbb {R}}^N}} \frac{F(y,h(w_\epsilon ))}{|y|^\beta |x-y|^\mu }dy\right) \frac{f(x,h(w_\epsilon )) }{|x|^\beta } \psi _{r,R}(x)h'(w_\epsilon )dx\\&\quad = \frac{1}{2} \int _{{\mathbb {R}}^N}\int _{{\mathbb {R}}^N} \frac{F(y,h(w_\epsilon ))f(x,h(w_\epsilon ))h'(w_\epsilon )\phi _{r,R}(x) x \cdot \nabla w_\epsilon (x) }{|y|^\beta |x-y|^{\mu } |x|^\beta }dxdy\\ {}&\qquad + \frac{1}{2} \int _{{\mathbb {R}}^N}\int _{\mathbb {R}^N}\frac{F(x,h(w_\epsilon ))f(y,h(w_\epsilon ))h'(w_\epsilon )\phi _{r,R}(y) y \cdot \nabla w_\epsilon (y) }{|y|^\beta |x-y|^{\mu } |x|^\beta }dxdy\\&\quad = -N \int _{{\mathbb {R}}^N}\int _{{\mathbb {R}}^N} \frac{F(x,h(w_\epsilon ))F(y,h(w_\epsilon ))\phi _{r,R}(x) }{|y|^\beta |x-y|^{\mu } |x|^\beta }dx dy\\&\quad \quad - \int _{{\mathbb {R}}^N}\int _{{\mathbb {R}}^N} \frac{F(x,h(w_\epsilon ))F(y,h(w_\epsilon )) x\cdot \nabla \phi _{r,R}(x) }{|y|^\beta |x-y|^{\mu } |x|^\beta }dx dy \\&\quad \quad + \frac{\mu }{2} \int _{{\mathbb {R}}^N}\int _{{\mathbb {R}}^N} \frac{F(x,h(w_\epsilon ))F(y,h(w_\epsilon )) }{|y|^\beta |x-y|^{\mu } |x|^\beta } \frac{(x-y)\cdot (x \phi _{r,R}(x)- y \phi _{r,R}(y))}{|x-y|^2}dx dy\\&\qquad + \beta \int _{{\mathbb {R}}^N}\int _{\mathbb {R}^N}\frac{F(x,h(w_\epsilon ))F(y,h(w_\epsilon ))\phi _{r,R}(x) }{|y|^\beta |x-y|^{\mu } |x|^\beta }dxdy. \end{aligned}$$

Taking \(r \rightarrow 0\) and \(R\rightarrow \infty \), by Lebesgue’s dominated convergence theorem,

$$\begin{aligned}&\int _{{\mathbb {R}}^N}\int _{{\mathbb {R}}^N} \frac{F(x,h(w_\epsilon ))F(y,h(w_\epsilon )) }{|y|^\beta |x-y|^{\mu } |x|^\beta } \frac{(x-y)\cdot (x \phi _{r,R}(x)- y \phi _{r,R}(y))}{|x-y|^2}dx dy\\&\quad \rightarrow \int _{\mathbb {R}^N}\int _{{\mathbb {R}}^N} \frac{F(x,h(w_\epsilon ))F(y,h(w_\epsilon ))}{|y|^\beta |x-y|^{\mu } |x|^\beta }dx dy;\\&\int _{{\mathbb {R}}^N}\int _{{\mathbb {R}}^N} \frac{F(x,h(w_\epsilon ))F(y,h(w_\epsilon )) x\cdot \nabla \phi _{r,R}(x) }{|y|^\beta |x-y|^{\mu } |x|^\beta }dx dy \rightarrow 0. \end{aligned}$$

Hence, combining the above estimates and taking \(\epsilon \rightarrow 0\), we obtain

$$\begin{aligned}{} & {} \int _{{{\mathbb {R}}^N}}\left( \int _{{{\mathbb {R}}^N}} \frac{F(y,h(w_\epsilon ))}{|y|^\beta |x-y|^\mu }dy\right) \frac{f(x,h(w_\epsilon ))}{|x|^\beta }\psi _{r,R}(x) dx\\{} & {} \quad \rightarrow -\frac{2N-\mu -2\beta }{2} \int _{\mathbb {R}^N}\int _{{\mathbb {R}}^N} \frac{F(y,h(w))F(x,h(w))}{|y|^\beta |x-y|^{\mu } |x|^\beta }dxdy. \end{aligned}$$

This completes the proof of the proposition. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Goyal, S. & Sreenadh, K. Quasilinear Schrödinger Equations With Stein-Weiss Type Convolution and Critical Exponential Nonlinearity in \({\mathbb {R}}^N\). J Geom Anal 34, 54 (2024). https://doi.org/10.1007/s12220-023-01505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01505-5

Keywords

Mathematics Subject Classification

Navigation