Skip to main content
Log in

Quasilinear Schrödinger Equations with Stein–Weiss Type Nonlinearity and Potential Vanishing at Infinity

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider the following quasilinear Schrödinger equation involving Stein–Weiss type nonlinearity:

$$\begin{aligned}{} & {} -\Delta u+V(x)u-\Delta (u^2)u\\{} & {} \qquad =\frac{1}{|x |^{\alpha }} \left( \int _{\mathbb {R}^N}\frac{G(u(y))}{|y-x |^{\mu }|y |^{\alpha }}dy\right) g(u(x)), \ \ \textrm{in}\ \ \mathbb {R}^N, \end{aligned}$$

where \(N\ge 3\), \(0<\mu <N\), \(\alpha \ge 0\) and \(2\alpha +\mu <\min \{\frac{N+2}{2}, 4\}\) and G is the primitive of function g. The potential \(V: \mathbb {R}^N\rightarrow \mathbb {R}\) may decay to zero at infinity. By using variational methods, penalization technique and \(L^{\infty }\)-estimates, we obtain the existence of a positive solution for the above quasilinear Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aires, J.F.L., Souto, M.A.S.: Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials. J. Math. Anal. Appl. 416, 924–946 (2014)

    Article  MathSciNet  Google Scholar 

  2. Aires, J.F.L., Souto, M.A.S.: Equation with positive coefficient in the quasilinear term and vanishing potential. Topol. Methods Nonlinear Anal. 46(2), 813–833 (2015)

    MathSciNet  Google Scholar 

  3. Alves, C.O., Figueiredo, G.M., Yang, M.: Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity. Adv. Nonlinear Anal. 5(4), 331–345 (2016)

    Article  MathSciNet  Google Scholar 

  4. Alves, C.O., Souto, M.A.S.: Existence of solution for a class of elliptic equations in \(\mathbb{R} ^N\) with vanishing potentials. J. Differ. Equ. 252, 5555–5568 (2012)

    Article  Google Scholar 

  5. Ambrosetti, A., Wang, Z.Q.: Positive solutions to a class of quasilinear elliptic equations on \(\mathbb{R} \). Discrete Contin. Dyn. Syst. 9(1), 55–68 (2003)

    Article  MathSciNet  Google Scholar 

  6. Araújo, Y.L., Carvalho, G., Clemente, R.: Quasilinear Schrödinger equations with singular and vanishing potentials involving nonlinearities with critical exponential growth. Topol. Methods Nonlinear Anal. 57(1), 317–342 (2021)

    MathSciNet  Google Scholar 

  7. Cardoso, J.A., Prazeres, D.S.D., Severo, U.B.: Fractional Schrödinger equations involving potential vanishing at infinity and supercritical exponents. Z. Angew. Math. Phys. 71, 129 (2020)

    Article  Google Scholar 

  8. Chen, J.H., Cheng, B.T., Huang, X.J.: Ground state solutions for a class of quasilinear Schrödinger equations with Choquard type nonlinearity. Appl. Math. Lett. 102, 106141 (2020)

    Article  MathSciNet  Google Scholar 

  9. Chen, S.X., Wu, X.: Existence of positive solutions for a class of quasilinear Schrödinger equations of Choquard type. J. Math. Anal. Appl. 475(2), 1754–1777 (2019)

    Article  MathSciNet  Google Scholar 

  10. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equation: a dual approach. Nonlinear Anal. T.M.A. 56, 213–226 (2004)

    Article  Google Scholar 

  11. del Pino, M., Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial. Differ. Equ. 4, 121–137 (1996)

    Article  MathSciNet  Google Scholar 

  12. do Ó, J.M., Severo, U.: Quasilinear Schrödinger equations involving concave and convex nonlinearities. Commun. Pure Appl. Anal. 8, 621–644 (2009)

    Article  MathSciNet  Google Scholar 

  13. de Albuquerque, J.C., Santos, J.L.: Schrödinger equations with Stein–Weiss type nonlinearity and potential vanishing at infinity. Mediterr. J. Math. 20, 218 (2023)

    Article  Google Scholar 

  14. do Ó, J.M., Gloss, E., Santana, C.: Solitary waves for a class of quasilinear Schrödinger equations involving vanishing potentials. Adv. Nonlinear Stud. 15(3), 691–714 (2015)

    Article  MathSciNet  Google Scholar 

  15. Deng, Y.B., Shuai, W.: Positive solutions for quasilinear Schrödinger equations with critical growth and potential vanishing at infinity. Commun. Pure Appl. Anal. 13(6), 2273–2287 (2014)

    Article  MathSciNet  Google Scholar 

  16. Du, L., Gao, F., Yang, M.: On elliptic equations with Stein–Weiss type convolution parts. Math. Z. 301, 2185–2225 (2022)

    Article  MathSciNet  Google Scholar 

  17. Li, Q.Q., Nie, J.J., Zhang, W.: Existence and asymptotics of normalized ground states for a Sobolev critical Kirchhoff equation. J. Geom. Anal. 33, 126 (2023)

    Article  MathSciNet  Google Scholar 

  18. Li, Z.X., Zhang, Y.M.: Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Commun. Pure Appl. Anal. 20(2), 933–954 (2021)

    Article  MathSciNet  Google Scholar 

  19. Liu, J.Q., Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equations. I. Proc. Am. Math. Soc. 131(2), 441–448 (2003)

    Article  Google Scholar 

  20. Liu, J.Q., Wang, Y.Q., Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equations. II. J. Differ. Equ. 187(2), 473–493 (2003)

    Article  Google Scholar 

  21. Liu, J.Q., Wang, Y.Q., Wang, Z.Q.: Solutions for quasilinear Schrödinger equations via the Nehari method. Commun. Partial Differ. Equ. 29(5–6), 879–901 (2004)

    Article  Google Scholar 

  22. Liu, X.Q., Liu, J.Q., Wang, Z.Q.: Quasilinear elliptic equations via perturbation method. Proc. Am. Math. Soc. 141(1), 253–263 (2013)

    Article  MathSciNet  Google Scholar 

  23. Liu, X.Q., Liu, J.Q., Wang, Z.Q.: Quasilinear elliptic equations with critical growth via perturbation method. J. Differ. Equ. 254(1), 102–124 (2013)

    Article  MathSciNet  Google Scholar 

  24. Lieb, E., Loss, M.: Analysis. Graduate Studies in Mathematics. AMS, Providence (2001)

    Google Scholar 

  25. Liu, X.N., Chen, H.B.: Positive solutions for a class of quasilinear Schrödinger equations with vanishing potentials. Bound. Value Probl. 35, 11 (2017)

    Google Scholar 

  26. Ling, P.Y., Huang, X.J., Chen, J.H.: Some existence results on a class of generalized quasilinear Schrödinger equations with Choquard type. Bull. Iran. Math. Soc. 48(4), 1389–1411 (2022)

    Article  Google Scholar 

  27. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalleukademie Verlag, Berlin (1954)

  28. Poppenberg, M., Schmitt, K., Wang, Z.Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial. Differ. Equ. 14(3), 329–344 (2002)

    Article  Google Scholar 

  29. Qin, D.D., Tang, X.H., Zhang, J.: Ground states for planar Hamiltonian elliptic systems with critical exponential growth. J. Differ. Equ. 308, 130–159 (2022)

    Article  MathSciNet  Google Scholar 

  30. Silva, E.A.B., Vieira, G.F.: Quasilinear asymptotically periodic Schrödinger equations with critical growth. Calc. Var. Partial. Differ. Equ. 39, 1–33 (2010)

    Article  Google Scholar 

  31. Stein, E., Weiss, G.: Fractional integrals on \(n\)-dimensional Euclidean space. J. Math. Mech. 7, 503–514 (1958)

    MathSciNet  Google Scholar 

  32. Su, Y., Shi, H.X.: Quasilinear choquard equation with critical exponent. J. Math. Anal. Appl. 508(1), 125826 (2022)

    Article  MathSciNet  Google Scholar 

  33. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51(1), 126–150 (1984)

    Article  MathSciNet  Google Scholar 

  34. Wang, W.B., Zhou, J.W., Li, Y.K.: Existence of positive solutions for fractional Schrödinger-Poisson system with critical or supercritical growth. Acta Math. Sin. (Chin. Ser.) 64(2), 269–280 (2021)

    Google Scholar 

  35. Yang, H.: Singularly perturbed quasilinear Choquard equations with nonlinearity satisfying Berestycki–Lions assumptions. Bound. Value Probl. 86, 1–18 (2021)

  36. Yang, X.Y., Tang, X.H., Gu, G.Z.: Multiplicity and concentration behavior of positive solutions for a generalized quasilinear Choquard equation. Complex Var. Elliptic Equ. 65(9), 1515–1547 (2020)

    Article  MathSciNet  Google Scholar 

  37. Zhang, J., Zhang, W.: Semiclassical states for coupled nonlinear Schrödinger system with competing potentials. J. Geom. Anal. 32, 114 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No.11901499); Nanhu Scholar Program for Young Scholars of XYNU (No.201912).

Author information

Authors and Affiliations

Authors

Contributions

All authors have made the same contribution and finalized the current version of this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yan-Fang Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, MC., Xue, YF. Quasilinear Schrödinger Equations with Stein–Weiss Type Nonlinearity and Potential Vanishing at Infinity. Qual. Theory Dyn. Syst. 23, 154 (2024). https://doi.org/10.1007/s12346-024-01013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01013-z

Keywords

Mathematics Subject Classification

Navigation