Skip to main content
Log in

A guide to the Choquard equation

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We survey old and recent results dealing with the existence and properties of solutions to the Choquard type equations

$$\begin{aligned} -\Delta u + V(x)u = \left( |x|^{-(N-\alpha )} *|u |^p\right) |u |^{p - 2} u \quad \text {in} \ \mathbb {R}^N, \end{aligned}$$

and some of its variants and extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This assumption was not stated explicitly in [154].

References

  1. Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248(2), 423–443 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ackermann, N.: A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations. J. Funct. Anal. 234(2), 277–320 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alves, C.O., Cassani, D., Tarsi, C., Yang, M.: Existence and concentration of ground state solutions for a critical nonlocal Schrödinger equation in \({\mathbb{R}}^2\). J. Differ. Equ. 261(3), 1933–1972 (2016)

    Article  MATH  Google Scholar 

  4. Alves, C.O., Figueiredo, G.M., Yang, M.: Multiple semiclassical solutions for a nonlinear Choquard equation with magnetic field. Asymptot. Anal. 96(2), 135–159 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alves, C.O., Nóbrega, A.B., Yang, M.: Multi-bump solutions for Choquard equation with deepening potential well. Calc. Var. Partial Differ. Equ. 55(30, 55:48 (2016)

  6. Alves, C.O., Yang, M.: Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differ. Equ. 257(11), 4133–4164 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Alves, C.O., Yang, M.: Multiplicity and concentration of solutions for a quasilinear Choquard equation. J. Math. Phys. 55, 061502 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ambrosetti, A.: On Schrödinger-Poisson systems. Milan J. Math. 76, 257–274 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ambrosetti, A., Garcia Azorero, J., Peral, I.: Perturbation of \(\Delta u+u^{(N+2)/(N-2)}=0\), the scalar curvature problem in \({\bf R}^N\), and related topics. J. Funct. Anal. 165(1), 117–149 (1999)

  10. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10(3), 391–404 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  12. Arriola, E.R., Soler, J.: A variational approach to the Schrödinger-Poisson system: asymptotic behaviour, breathers, and stability. J. Stat. Phys. 103(5–6), 1069–1105 (2001)

    Article  MATH  Google Scholar 

  13. Aschbacher, W.H., Fröhlich, J., Graf, G.M., Schnee, K., Troyer, M.: Symmetry breaking regime in the nonlinear Hartree equation. J. Math. Phys. 43(8), 3879–3891 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Azzollini, A., d’Avenia, P., Luisi, V.: Generalized Schrödinger-Poisson type systems. Commun. Pure Appl. Anal. 12(2), 867–879 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Baernstein, A. II.: A unified approach to symmetrization. In: Partial differential equations of elliptic type (Cortona, 1992), Sympos. Math., vol. XXXV, pp. 47–91. Cambridge Univ. Press, Cambridge (1994)

  16. Bahrami, M., Großardt, A., Donadi, S., Bassi, A.: The Schrödinger-Newton equation and its foundations. New J. Phys. 16, 115007 (2014)

  17. Bartsch, T., Weth, T., Willem, M.: Partial symmetry of least energy nodal solutions to some variational problems. J. Anal. Math. 96, 1–18 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Battaglia, L., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations in the plane. arXiv:1604.03294

  19. Beckner, W.: Pitt’s inequality with sharp convolution estimates. Proc. Am. Math. Soc. 136(5), 1871–1885 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Beckner, W.: Pitt’s inequality and the fractional Laplacian: sharp error estimates. Forum Math. 24, 177–209 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bellazzini, J., Frank, R.L., Visciglia, N.: Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems. Math. Ann. 360(3–4), 653–673 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. Benci, V., Cerami, G.: Existence of positive solutions of the equation \(-\Delta u+a(x)u=u^{(N+2)/(N-2)}\) in \({ R}^N\). J. Funct. Anal. 88(1), 90–117 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11(2), 283–293 (1998)

    MATH  MathSciNet  Google Scholar 

  24. Benguria, R., Brezis, H., Lieb, E.H.: The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. Commun. Math. Phys. 79(2), 167–180 (1981)

    Article  MATH  Google Scholar 

  25. Berestycki, H., Gallouët, T., Kavian, O.: Équations de champs scalaires euclidiens non linéaires dans le plan. C. R. Acad. Sci. Paris Sér. I Math. 297(5), 307–310 (1983)

  26. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    MATH  MathSciNet  Google Scholar 

  27. Bernstein, D.H., Giladi, E., Jones, K.R.W.: Eigenstates of the gravitational Schrödinger equation. Mod. Phys. Lett. A 13(29), 2327–2336 (1998)

    Article  Google Scholar 

  28. Bonanno, C., d’Avenia, P., Ghimenti, M., Squassina, M.: Soliton dynamics for the generalized Choquard equation. J. Math. Anal. Appl. 417(1), 180–199 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Bonheure, D., Van Schaftingen, J.: Bound state solutions for a class of nonlinear Schrödinger equations. Rev. Mat. Iberoam. 24(1), 297–351 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Bongers, A.: Existenzaussagen für die Choquard-Gleichung: ein nichtlineares Eigenwertproblem der Plasma-Physik. Z. Angew. Math. Mech. 60(7), T240–T242 (1980)

    MATH  MathSciNet  Google Scholar 

  31. Brascamp, H.J., Lieb, E.H., Luttinger, J.M.: A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17, 227–237 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  32. Brezis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. (9) 58(2), 137–151 (1979)

  33. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  34. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  35. Brock, F., Solynin, AYu.: An approach to symmetrization via polarization. Trans. Am. Math. Soc. 352(4), 1759–1796 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  36. Brothers, J.E., Ziemer, W.P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988)

    MATH  MathSciNet  Google Scholar 

  37. Buffoni, B., Jeanjean, L., Stuart, C.A.: Existence of a nontrivial solution to a strongly indefinite semilinear equation. Proc. Am. Math. Soc. 119(1), 179–186 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  38. Burchard, A.: Cases of equality in the Riesz rearrangement inequality. Ann. Math. (2) 143(3), 499–527 (1996)

  39. Byeon, J., Jeanjean, L.: Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete Contin. Dyn. Syst. 19(2), 255–269 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  40. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185(2), 185–200 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  41. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. II. Calc. Var. Partial Differ. Equ. 18(2), 207–219 (2003)

    Article  MATH  Google Scholar 

  42. Cao, D.M.: The existence of nontrivial solutions to a generalized Choquard-Pekar equation. Acta Math. Sci. (Chinese) 9(1), 101–112 (1989). (Chinese)

    MathSciNet  Google Scholar 

  43. Cao, P., Wang, J., Zou, W.: On the standing waves for nonlinear Hartree equation with confining potential. J. Math. Phys. 53(3), 033702, 27 (2012)

  44. Castro, A., Cossio, J., Neuberger, J.M.: A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems. Electron. J. Differ. Equ. 1998(2), 18 (1998)

  45. Castro, A., Cossio, J., Neuberger, J.M.: A sign-changing solution for a superlinear Dirichlet problem. Rocky Mt. J. Math. 27(4), 1041–1053 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  46. Catto, I., Dolbeault, J., Sánchez, O., Soler, J.: Existence of steady states for the Maxwell-Schrödinger-Poisson system: exploring the applicability of the concentrationcompactness principle. Math. Models Methods Appl. Sci. 23(10), 1915–1938 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  47. Catto, I., Le Bris, C., Lions, P.-L.: On some periodic Hartree-type models for crystals. Ann. Inst. H. Poincaré Anal. Non Linéaire 19(2), 143–190 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  48. Cerami, G., Solimini, S., Struwe, M.: Some existence results for superlinear elliptic boundary value problems involving critical exponents. J. Funct. Anal. 69(3), 289–306 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  49. Chen, J., Guo, B.: Blow up solutions for one class of system of Pekar-Choquard type nonlinear Schrödinger equation. Appl. Math. Comput. 186(1), 83–92 (2007)

    MATH  MathSciNet  Google Scholar 

  50. Chen, S., Xiao, L.: Existence of a nontrivial solution for a strongly indefinite periodic Choquard system. Calc. Var. Partial Differ. Equ. 54(1), 599–614 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  51. Chen, W., Li, C., Ou, B.: Qualitative properties of solutions for an integral equation. Discrete Contin. Dyn. Syst. 12(2), 347–354 (2005)

    MATH  MathSciNet  Google Scholar 

  52. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59(3), 330–343 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  53. Chen, H., Zhou, F.: Classification of isolated singularities of positive solutions for Choquard equations. J. Differ. Equ. doi:10.1016/j.jde.2016.08.047

  54. Choquard, P., Stubbe, J.: The one-dimensional Schrödinger-Newton equations. Lett. Math. Phys. 81(2), 177–184 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  55. Choquard, P., Stubbe, J., Vuffray, M.: Stationary solutions of the Schrödinger- Newton model—an ODE approach. Differ. Integral Equ. 21(7–8), 665–679 (2008)

    MATH  Google Scholar 

  56. Cingolani, S., Clapp, M., Secchi, S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63(2), 233–248 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  57. Cingolani, S., Clapp, M., Secchi, S.: Intertwining semiclassical solutions to a Schrödinger-Newton system. Discrete Contin. Dyn. Syst. Ser. S 6(4), 891–908 (2013)

    MATH  MathSciNet  Google Scholar 

  58. Cingolani, S., Secchi, S.: Multiple S1-orbits for the Schrödinger-Newton system. Differ. Integral Equ. 26(9/10), 867–884 (2013)

    MATH  Google Scholar 

  59. Cingolani, S., Secchi, S.: Ground states for the pseudo-relativistic Hartree equation with external potential. Proc. R. Soc. Edinb. Sect. A 145(1), 73–90 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  60. Cingolani, S., Secchi, S., Squassina, M.: Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinb. Sect. A 140(5), 973–1009 (2010)

    Article  MATH  Google Scholar 

  61. Cingolani, S., Weth, T.: On the planar Schrödinger-Poisson system. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(1), 169–197 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  62. Clapp, M., Salazar, D.: Positive and sign changing solutions to a nonlinear Choquard equation. J. Math. Anal. Appl. 407(1), 1–15 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  63. Coti Zelati, V., Nolasco, M.: Existence of ground states for nonlinear, pseudorelativistic Schrödinger equations. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 22(1), 51–72 (2011)

  64. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, p. 18. Springer, Berlin (1987)

  65. d’Avenia, P., Squassina, M.: Soliton dynamics for the Schrödinger-Newton system. Math. Models Methods Appl. Sci. 24(3), 553–572 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  66. d’Avenia, P., Siciliano, G., Squassina, M.: On fractional Choquard equations. Math. Models Methods Appl. Sci. 25(8), 1447–1476 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  67. Deng, Y., Lu, L., Shuai, W.: Constraint minimizers of mass critical Hartree energy functionals: Existence and mass concentration. J. Math. Phys. 56(6), 061503, 15 (2015)

  68. del Pino, M., Felmer, P.L.: Semi-classical states for nonlinear Schrödinger equations. J. Funct. Anal. 149(1), 245–265 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  69. De Napoli, P.L., Drelichman, I.: Elementary proofs of embedding theorems for potential spaces of radial functions. In: Ruzhansky, M., Tikhonov, S. (eds.) Methods of Fourier Analysis and Approximation Theory, pp. 115–138. Birkhäuser, Basel (2016)

  70. Di Cosmo, J., Van Schaftingen, J.: Semiclassical stationary states for nonlinear Schrödinger equations under a strong external magnetic field. J. Differ. Equ. 259(2), 596–627 (2015)

    Article  MATH  Google Scholar 

  71. Diósi, L.: Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A 105(4–5), 199–202 (1984)

    Article  Google Scholar 

  72. Disconzi, M.M.: A priori estimates for a critical Schrödinger-Newton equation. In: Proceedings of the Ninth MSU-UAB Conference on Differential Equations and Computational Simulations, Electron. J. Differ. Equ. Conf., vol. 20, pp. 39–51, Texas State Univ., San Marcos (2013)

  73. Donsker, M.D., Varadhan, S.R.S.: The polaron problem and large deviations. Phys. Rep. 77(3), 235–237 (1981, New stochasitic methods in physics)

  74. Donsker, M.D., Varadhan, S.R.S.: Asymptotics for the polaron. Commun. Pure Appl. Math. 36(4), 505–528 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  75. Duoandikoetxea, J.: Fractional integrals on radial functions with applications to weighted inequalities. Ann. Mat. Pura Appl. (4) 192(4), 553–568 (2013)

  76. du Plessis, N.: Some theorems about the Riesz fractional integral. Trans. Am. Math. Soc. 80, 124–134 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  77. du Plessis, N.: An introduction to potential theory, University Mathematical Monographs, No. 7. Hafner Publishing Co., Darien, Conn., Oliver and Boyd, Edinburgh (1970)

  78. Dymarskii, Ya.M.: The periodic Choquard equation. In: Differential operators and related topics, Vol. I, Oper. Theory Adv. Appl., vol. 117, pp. 87–99. Birkhäuser, Basel (2000)

  79. Efinger, H.J.: On the theory of certain nonlinear Schrödinger equations with nonlocal interaction. Nuovo Cimento B (11) 80(2), 260–278 (1984)

  80. Feng, B.: Sharp threshold of global existence and instability of standing wave for the Schrödinger-Hartree equation with a harmonic potential. Nonlinear Anal. Real World Appl. 31, 132–145 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  81. Frank, R.L., Geisinger, L.: The ground state energy of a polaron in a strong magnetic field. Commun. Math. Phys. 338(1), 1–29 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  82. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  83. Frank, R.L., Lenzmann, E.: On ground states for the L2-critical boson star equation. arXiv:0910.2721

  84. Frank, R.L., Lieb, E.H.: Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality. Calc. Var. Partial Differ. Equ. 39(1–2), 85–99 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  85. Franklin, J., Guo, Y., McNutt, A., Morgan, A.: The Schrödinger-Newton system with self-field coupling. Class. Quantum Gravity 32(6), 065010 (2015)

  86. Fröhlich, H.: Theory of electrical breakdown in ionic crystal. Proc. R. Soc. Ser. A 160(901), 230–241 (1937)

    Article  Google Scholar 

  87. Fröhlich, H.: Electrons in lattice fields. Adv. Phys. 3(11) (1954)

  88. Fröhlich, J., Lenzmann, E.: Mean-field limit of quantum Bose gases and nonlinear Hartree equation. In: Séminaire: Équations aux Dérivées Partielles (2003), Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau, pp. Exp. No. XIX, 26 (2004)

  89. Fröhlich, J., Jonsson, B.L.G., Lenzmann, E.: Boson stars as solitary waves. Commun. Math. Phys. 274(1), 1–30 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  90. Gao, F., Yang, M.: On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation. arXiv:1604.00826

  91. Gao, F., Yang, M.: Existence and multiplicity of solutions for a class of Choquard equations with Hardy-Littlewood-Sobolev critical exponent. arXiv:1605.05038

  92. Genev, H., Venkov, G.: Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete Contin. Dyn. Syst. Ser. S 5(5), 903–923 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  93. Ghergu, M., Taliaferro, S.D.: Pointwise bounds and blow-up for Choquard-Pekar inequalities at an isolated singularity. J. Differ. Equ. 261(1), 189–217 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  94. Ghimenti, M., Moroz, V., Van Schaftingen, J.: Least action nodal solutions for the quadratic Choquard equation. Proc. Am. Math. Soc. doi:10.1090/proc/13247

  95. Ghimenti, M., Van Schaftingen, J.: Nodal solutions for the Choquard equation. J. Funct. Anal. 271(1), 107–135 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  96. Ghoussoub, N.: Self-dual partial differential systems and their variational principles, Springer Monographs in Mathematics. Springer, New York (2009)

  97. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  98. Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations with nonlocal interaction. Math. Z. 170(2), 109–136 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  99. Giulini, D., Großardt, A.: The Schrödinger-Newton equation as a non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields. Class. Quantum Gravity 29(21), 215010, 25 (2012)

  100. Griesemer, M., Hantsch, F., Wellig, D.: On the magnetic Pekar functional and the existence of bipolarons. Rev. Math. Phys. 24(6), 1250014, 13 (2012)

  101. Guo, Q., Su, Y.: Instability of standing waves for inhomogeneous Hartree equations. J. Math. Anal. Appl. 437(2), 1159–1175 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  102. Gustafson, K., Sather, D.: A branching analysis of the Hartree equation. Rend. Mat. (6) 4, 723–734 (1971)

  103. Guzmán, F.S., Ureña-López, L.A.: Newtonian collapse of scalar field dark matter. Phys. Rev. D 68, 024023 (2003)

    Article  Google Scholar 

  104. Guzmán, F.S., Ureña-López, L.A.: Evolution of the Schrödinger-Newton system for a self-gravitating scalar field. Phys. Rev. D 69, 124033 (2004)

    Article  Google Scholar 

  105. Hajaiej, H.: Schrödinger systems arising in nonlinear optics and quantum mechanics. Part I. Math. Models Methods Appl. Sci. 22(7), 1250010, 27 (2012)

  106. Hajaiej, H.: On Schrödinger systems arising in nonlinear optics and quantum mechanics: II. Nonlinearity 26(4), 959–970 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  107. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press (1952)

  108. Herbst, I.W.: Spectral theory of the operator \((p^{2}+m^{2})^{1/2}-Ze^{2}/r\). Commun. Math. Phys. 53(3), 285–294 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  109. Hirata, J., Ikoma, N., Tanaka, K.: Nonlinear scalar field equations in RN: mountainpass and symmetric mountain-pass approaches. Topol. Methods Nonlinear Anal. 35(2), 253–276 (2010)

    MATH  MathSciNet  Google Scholar 

  110. Ianni, I., Ruiz, D.: Ground and bound states for a static Schrödinger-Poisson-Slater problem. Commun. Contemp. Math. 14(1), 1250003, 22 (2012)

  111. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  112. Jeong, W., Seok, J.: On perturbation of a functional with the mountain-pass geometry: applications to the nonlinear Schrödinger-Poisson equations and the nonlinear Klein-Gordon-Maxwell equations. Calc. Var. Partial Differ. Equ. 49(1–2), 649–668 (2014)

    Article  MATH  Google Scholar 

  113. Jones, K.R.W.: Gravitational self-energy as the litmus of reality. Mod. Phys. Lett. A 10(8), 657–668 (1995)

    Article  Google Scholar 

  114. Jones, K.R.W.: Newtonian quantum gravity. Aust. J. Phys. 48(6), 1055–1081 (1995)

    Article  Google Scholar 

  115. Karasev, M.V., Maslov, V.P.: Quasiclassical soliton solutions of the Hartree equation. Newtonian interaction with screening, Teoret. Mat. Fiz. 40(2), 235–244 (1979) (Russian); English transl., Theoret. and Math. Phys. 40(2), 715–721 (1979)

  116. Kawohl, B.: Rearrangements and convexity of level sets in PDE. Lecture Notes in Mathematics, vol. 1150. Springer, Berlin (1985)

  117. Krasnosel’skiĭ, M.A.: Topological methods in the theory of nonlinear integral equations, translated by A. H. Armstrong, p. 6. MacMillan, New York (1964)

  118. Kumar, D., Soni, V.: Single particle Schrödinger equation with gravitational selfinteraction. Phys. Lett. A 271(3), 157–166 (2000)

    Article  MathSciNet  Google Scholar 

  119. Küpper, T., Zhang, Z., Xia, H.: Multiple positive solutions and bifurcation for an equation related to Choquard’s equation. Proc. Edinb. Math. Soc. (2) 46(3), 597–607 (2003)

  120. Landkof, N.S.: Foundations of modern potential theory, translated by A. P. Doohovskoy, Grundlehren der mathematischen Wissenschaften, Springer, New York–Heidelberg (1972)

  121. Le Bris, C., Lions, P.-L.: From atoms to crystals: a mathematical journey. Bull. Amer. Math. Soc. (N.S.) 42(3), 291–363 (2005)

  122. Lei, Y.: On the regularity of positive solutions of a class of Choquard type equations. Math. Z. 273(3–4), 883–905 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  123. Lei, Y.: Qualitative analysis for the static Hartree-type equations. SIAM J. Math. Anal. 45(1), 388–406 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  124. Lenzmann, E.: Uniqueness of ground states for pseudorelativistic Hartree equations. Anal. PDE 2(1), 1–27 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  125. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose systems. Adv. Math. 254, 570–621 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  126. Li, G.-B., Ye, H.-Y.: The existence of positive solutions with prescribed L2-norm for nonlinear Choquard equations. J. Math. Phys. 55(12), 121501, 19 (2014)

  127. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57(2), 93–105 (1976/77)

  128. Lieb, E.H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. (2) 118(2), 349–374 (1983)

  129. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence (2001)

  130. Lieb, E.H., Thomas, L.E.: Exact ground state energy of the strong-coupling polaron. Commun. Math. Phys. 183(3), 511–519 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  131. Lieb, E.H., Yau, H.-T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112(1), 147–174 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  132. Lions, P.-L.: The Choquard equation and related questions. Nonlinear Anal. 4(6), 1063–1072 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  133. Lions, P.-L.: Compactness and topological methods for some nonlinear variational problems of mathematical physics, Nonlinear problems: present and future (Los Alamos, N.M., 1981), North-Holland Math. Stud., vol. 61, pp. 17–34. North-Holland, Amsterdam–New York (1982)

  134. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

  135. Lions, P.-L.: Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109(1), 33–97 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  136. Lopes, O., Maris, M.: Symmetry of minimizers for some nonlocal variational problems. J. Funct. Anal. 254(2), 535–592 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  137. Lü, D.: Existence and concentration of solutions for a nonlinear Choquard equation. Mediterr. J. Math. 12(3), 839–850 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  138. Macrì, M., Nolasco, M.: Stationary solutions for the non-linear Hartree equation with a slowly varying potential. NoDEA Nonlinear Differ. Equ. Appl. 16(6), 681–715 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  139. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195(2), 455–467 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  140. Maeda, M., Masaki, S.: An example of stable excited state on nonlinear Schrödinger equation with nonlocal nonlinearity. Differ. Integral Equ. 26(7–8), 731–756 (2013)

    MATH  Google Scholar 

  141. Manfredi, G.: The Schrödinger-Newton equations beyond Newton. Gen. Relativ. Gravity 47(2), 1 (2015)

  142. Mawhin, J., Willem, M.: Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, p. 6. Springer, New York (1989)

    Book  Google Scholar 

  143. Menzala, G.P.: On regular solutions of a nonlinear equation of Choquard’s type. Proc. R. Soc. Edinb. Sect. A 86(3–4), 291–301 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  144. Menzala, G.P.: On the nonexistence of solutions for an elliptic problem in unbounded domains. Funkcial. Ekvac. 26(3), 231–235 (1983)

    MATH  MathSciNet  Google Scholar 

  145. Mercuri, C., Moroz, V., Van Schaftingen, J.: Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency. Calc. Var. Partial Differ. Equ. arXiv:1507.02837

  146. Møller, C., The energy-momentum complex in general relativity and related problems. In: Les théories relativistes de la gravitation (Royaumont, 1959), pp. 15–29. Éditions du Centre National de la Recherche Scientifique, Paris (1959)

  147. Moroz, I.M., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger-Newton equations. Class. Quantum Gravity 15(9), 2733–2742 (1998)

    Article  MATH  Google Scholar 

  148. Moroz, V., Van Schaftingen, J.: Semiclassical stationary states for nonlinear Schrödinger equations with fast decaying potentials. Calc. Var. Partial Differ. Equ. 37(1–2), 1–27 (2010)

    Article  MATH  Google Scholar 

  149. Moroz, V., Van Schaftingen, J.: Nonlocal Hardy type inequalities with optimal constants and remainder terms. Ann. Univ. Buchar. Math. Ser. 3 (LXI)(2), 187–200 (2012)

  150. Moroz, V., Van Schaftingen, J.: Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains. J. Differ. Equ. 254(8), 3089–3145 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  151. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  152. Moroz, V., Van Schaftingen, J.: Semi-classical states for the Choquard equation. Calc. Var. Partial Differ. Equ. 52(1–2), 199–235 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  153. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367(9), 6557–6579 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  154. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Commun. Contemp. Math. 17(5), 1550005 (12 pages) (2015)

  155. Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 192, 261–274 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  156. Mugnai, D.: The Schrödinger-Poisson system with positive potential. Commun. Partial Differ. Equ. 36(7), 1099–1117 (2011)

    Article  MATH  Google Scholar 

  157. Mukherjee, T., Sreenadh, K.: Existence and multiplicity results for Brezis-Nirenberg type fractional Choquard equation. arXiv:1605.06805

  158. Mugnai, D.: Pseudorelativistic Hartree equation with general nonlinearity: existence, non-existence and variational identities. Adv. Nonlinear Stud. 13(4), 799–823 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  159. Nolasco, M.: Breathing modes for the Schrödinger-Poisson system with a multiple-well external potential. Commun. Pure Appl. Anal. 9(5), 1411–1419 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  160. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle, p. 2. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  161. Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relat. Gravit. 28(5), 581–600 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  162. Penrose, R.: Quantum computation, entanglement and state reduction. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 356(1743), 1927–1939 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  163. Pinchover, Y., Tintarev, K.: A ground state alternative for singular Schrödinger operators. J. Funct. Anal. 230(1), 65–77 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  164. Pohožaev, S.I.: On the eigenfunctions of the equation \(\Delta u+\lambda f(u)=0\). Dokl. Akad. Nauk SSSR 165, 36–39 (1965) (Russian); English transl., Soviet Math. Dokl. 6, 1408–1411 (1965)

  165. Pólya, G., Szegö, G.: Isoperimetric inequalities in mathematical physics. In: Annals of Mathematics Studies, no. 27. Princeton University Press, Princeton (1951)

  166. Pucci, P., Serrin, J.: A general variational identity. Indiana Univ. Math. J. 35(3), 681–703 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  167. Quittner, P., Souplet, P.: Superlinear parabolic problems: Blow-up, global existence and steady states, Birkhäuser Advanced Texts: Basler Lehrbücher, p. 17. Birkhäuser, Basel (2007)

    Google Scholar 

  168. Rabinowitz, P.H.: Variational methods for nonlinear eigenvalue problems. In: Prodi, G. (ed.) Eigenvalues of non-linear problems (Varenna, 1974), 139–195. Edizioni Cremonese, Rome (1974)

  169. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence (1986)

    Book  Google Scholar 

  170. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  171. Rabinowitz, P.H.: Critical point theory and applications to differential equations: a survey. In: Topological nonlinear analysis, Progr. Nonlinear Differential Equations Appl., vol. 15, pp. 464–513. Birkhäuser Boston, Boston (1995)

  172. Riesz, F.: Sur une inégalité intégrale. J. Lond. Math. Soc. S1-5(3), 162 (1930)

  173. Riesz, M.: L’intégrale de Riemann-Liouville et le problème de Cauchy pour l’équation des ondes. Bull. Soc. Math. France 67, 153–170 (1939)

    Article  MATH  MathSciNet  Google Scholar 

  174. Riesz, M.: L’intégrale de Riemann-Liouville et le problème de Cauchy. Acta Math. 81, 1–223 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  175. Rosenfeld, L.: On quantization of fields. Nucl. Phys. 40, 353–356 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  176. Rubin, B.S.: One-dimensional representation, inversion and certain properties of Riesz potentials of radial functions. Mat. Zametki 34(4), 521–533 (1983). (Russian)

    MathSciNet  Google Scholar 

  177. Ruffini, R., Bonazzola, S.: Systems of self-gravitating particles in general relativity and the concept of an equation of state. Phys. Rev. 187(5), 1767–1783 (1969)

    Article  Google Scholar 

  178. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237(2), 655–674 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  179. Ruiz, D.: On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases. Arch. Ration. Mech. Anal. 198(1), 349–368 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  180. Ruiz, D., Van Schaftingen, J.: Odd symmetry of least energy nodal solutions for the Choquard equation (2016). arXiv:1606.05668

  181. Salazar, D.: Vortex-type solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 66(3), 663–675 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  182. Samko, S.G.: Hypersingular integrals and their applications, Analytical Methods and Special Functions, vol. 5. Taylor & Francis Ltd, London (2002)

    MATH  Google Scholar 

  183. Samko, S.: Best constant in the weighted Hardy inequality: the spatial and spherical version. Fract. Calc. Appl. Anal. 8(1), 39–52 (2005)

    MATH  MathSciNet  Google Scholar 

  184. Schunck, F.E., Mielke, E.W.: General relativistic boson stars. Class. Quantum Gravity 20(20), R301–R356 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  185. Secchi, S.: A note on Schrödinger-Newton systems with decaying electric potential. Nonlinear Anal. 72(9–10), 3842–3856 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  186. Siegel, D., Talvila, E.: Pointwise growth estimates of the Riesz potential. In: Dynam. Contin. Discrete Impuls. Systems 5(1–4), 185–194 (1999, Differential equations and dynamical systems (Waterloo, ON, 1997))

  187. Sobolev, S.L.: On a theorem of functional analysis. Math. Sbornik 4 46(3), 5–9 (1938) (Russian); English transl., Amer. Math. Soc. Transl. 2 (1938), 39–68

  188. Souto,M.A.S., de Lima, R.N.: Choquard equations with mixed potential. arXiv:1506.08179

  189. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

  190. Stein, E.M., Weiss, G.: Fractional integrals on \(n\)-dimensional Euclidean space. J. Math. Mech. 7, 503–514 (1958)

    MATH  MathSciNet  Google Scholar 

  191. Stein, E.M., Zygmund, A.: Boundedness of translation invariant operators on Hölder spaces and \(L^{p}\)-spaces. Ann. Math. (2) 85, 337–349 (1967)

  192. Struwe, M.: Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems, 4th edn. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34. Springer, Berlin (2008)

  193. Stuart, C.A.: Bifurcation for variational problems when the linearisation has no eigenvalues. J. Funct. Anal. 38(2), 169–187 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  194. Stubbe, J.: Bound states of two-dimensional Schrödinger-Newton equations. arXiv:0807.4059

  195. Stubbe, J., Vuffray, M.: Bound states of the Schrödinger-Newton model in low dimensions. Nonlinear Anal. 73(10), 3171–3178 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  196. Sun, X., Zhang, Y.: Multi-peak solution for nonlinear magnetic Choquard type equation. J. Math. Phys. 55(3), 031508 (25 p.) (2014)

  197. Tarantello, G.: On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 9(3), 281–304 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  198. Tod, K.P.: The ground state energy of the Schrödinger-Newton equation. Phys. Lett. A 280(4), 173–176 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  199. Thim, J.: Asymptotics and inversion of Riesz potentials through decomposition in radial and spherical parts. Ann. Mat. Pura Appl. (4) 195(2), 323–341 (2016)

  200. Tod, K.P., Moroz, I.M.: An analytical approach to the Schrödinger-Newton equations. Nonlinearity 12(2), 201–216 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  201. Trudinger, N.S.: Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa (3) 22, 265–274 (1968)

  202. Vaira, G.: Ground states for Schrödinger-Poisson type systems. Ric. Mat. 60(2), 263–297 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  203. Vaira, G.: Existence of bound states for Schrödinger-Newton type systems. Adv. Nonlinear Stud. 13(2), 495–516 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  204. Van Schaftingen, J., Willem, M.: Symmetry of solutions of semilinear elliptic problems. J. Eur. Math. Soc. (JEMS) 10(2), 439–456 (2008)

    MATH  MathSciNet  Google Scholar 

  205. Van Schaftingen, J., Xia, J.: Solutions to the Choquard equation under coercive potentials. arXiv:1607.00151

  206. Wang, T.: Existence and nonexistence of nontrivial solutions for Choquard type equations. Electron. J. Diff. Equ. 2016(03), 1–17 (2016)

    MATH  MathSciNet  Google Scholar 

  207. Wang, T., Yia, T.: Uniqueness of positive solutions of the Choquard type equations. Appl. Anal. doi:10.1080/00036811.2016.1138473

  208. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1982/83)

  209. Wei, J., Winter, M.: Strongly interacting bumps for the Schrödinger-Newton equations. J. Math. Phys. 50(1), 012905 (22 p.) (2009)

  210. Weth, T.: Spectral and variational characterizations of solutions to semilinear eigenvalue problems, doctoral dissertation, p. 6. Johannes Gutenberg-Universität, Mainz (2001)

    Google Scholar 

  211. Willem, M.: Minimax theorems. In: Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser, Boston, Mass (1996)

  212. Xiang, C.-L.: Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions. arXiv:1506.01550

  213. Xie, T., Xiao, L., Wang, J.: Existence of multiple positive solutions for Choquard equation with perturbation. Adv. Math. Phys. 760157 (10 p.) (2015)

  214. Yafaev, D.: Sharp constants in the Hardy-Rellich inequalities. J. Funct. Anal. 168(1), 121–144 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  215. Yang, M., Ding, Y.: Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part. Commun. Pure Appl. Anal. 12(2), 771–783 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  216. Yang, M., Wei, Y.: Existence and multiplicity of solutions for nonlinear Schrödinger equations with magnetic field and Hartree type nonlinearities. J. Math. Anal. Appl. 403(2), 680–694 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  217. Yang, M., Zhang, J., Zhang, Y.: Multi-peak solutions for nonlinear Choquard equation with a general nonlinearity. arXiv:1604.04715

  218. Ye, H.-Y.: The existence of least energy nodal solutions for some class of Kirchhoff equations and Choquard equations in \({\mathbb{R}^N}\). J. Math. Anal. Appl. 431(2), 935–954 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  219. Ye, H.-Y.: Mass minimizers and concentration for nonlinear Choquard equations in \({\mathbb{R}}^N\). arXiv:1502.01560

  220. Z. Zhang, Multiple solutions of the Choquard equation. In: Differential equations and control theory (Wuhan: 1994), Lecture Notes in Pure and Appl. Math., vol. 176, pp. 477–482. Dekker, New York (1996)

  221. Zhang, Z.: Multiple solutions of nonhomogeneous for related Choquard’s equation. Acta Math. Sci. Ser. B Engl. Ed. 20(3), 374–379 (2000)

    MATH  MathSciNet  Google Scholar 

  222. Zhang, Z.: Multiple solutions of nonhomogeneous Chouquard’s equations. Acta Math. Appl. Sin. (English Ser.) 17(1), 47–52 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  223. Zhang, Z., Küpper, T., Hu, A., Xia, H.: Existence of a nontrivial solution for Choquard’s equation. Acta Math. Sci. Ser. B Engl. Ed. 26(3), 460–468 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  224. Zhao, L., Zhao, F.: On the existence of solutions for the Schrödinger-Poisson equations. J. Math. Anal. Appl. 346(1), 155–169 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  225. Zhao, L., Zhao, F., Shi, J.: Higher dimensional solitary waves generated by secondharmonic generation in quadratic media. Calc. Var. Partial Differ. Equ. 54(3), 2657–2691 (2015)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Van Schaftingen.

Additional information

In honour of Paul Rabinowitz and with gratitude for his contributions to the understanding of differential equations.

Appendix: About the Riesz potentials

Appendix: About the Riesz potentials

The Riesz potential has been introduced by Riesz in the 1930s [173] and was systematically studied in his fundamental paper [174]. An exposition on basic functional–analytic properties of the Riesz potentials could be found in Stein’s monograph [189, §5.1] and also in many places in [129]. A systematic potential theoretic study of the Riesz potentials is presented in the monographs by Landkof [120] (see also du Plessis [77, chapter 3] for a shorter exposition).

1.1 Definition and semigroup property

The Riesz potential \(I_\alpha \) of order \(\alpha \in (0, N)\) on the Euclidean space \(\mathbb {R}^N\) of dimension \(N \ge 1\) is defined for each \(x \in \mathbb {R}^N {\setminus } \{0\}\) by

$$\begin{aligned} I_\alpha (x) = \frac{A_\alpha }{|x |^{N - \alpha }}, \quad \text {where}\quad A_\alpha = \frac{\Gamma (\tfrac{N-\alpha }{2})}{\Gamma (\tfrac{\alpha }{2})\pi ^{N/2}2^{\alpha }}. \end{aligned}$$

The choice of normalisation constant \(A_\alpha \) ensures the semigroup property

$$\begin{aligned} I_\alpha *I_\beta =I_{\alpha +\beta },\quad \forall \alpha ,\beta >0 \quad \text {such that}\quad \alpha +\beta <N, \end{aligned}$$

and, for \(N\ge 3\), the property

$$\begin{aligned}-\Delta I_\alpha =I_{\alpha -2},\quad \forall \alpha \in (2,N). \end{aligned}$$

In addition, \(-\Delta I_2=\delta \), where \(\delta \) is the Dirac delta function, that is \(I_2\) is the Green function of the Laplacian \(-\Delta \) on \(\mathbb {R}^N\). More generally, \(I_\alpha \) could be interpreted as the inverse of the fractional Laplacian operator \((-\Delta )^{\alpha /2}\). See, e.g. ([120, §I.1]; [174, 189, §V.1.1]) for the study of these fundamental properties of the Riesz potentials.

When \(\alpha \rightarrow 0\), \(I_\alpha \rightarrow \delta \), in the vague sense [120, p.46]. When \(\alpha \rightarrow N\), \(I_\alpha *f\rightarrow A_N\log \big (\frac{1}{|x|}\big )*f\) for every \(f\in C^\infty _c(\mathbb {R}^N)\) such that \(\int _{\mathbb {R}^N}f=0\), where \(A_N=\lim _{\alpha \rightarrow N}(N-\alpha )A_\alpha =1/\big (\Gamma (d/2)\pi ^{d/2}2^{d-1}\big )\) [120, p.50].

The definition of the Riesz potentials as well as the semigroup property could be extended from \(\alpha \in (0,N)\) to arbitrary complex \(\alpha \) with \(\mathrm {Re}(\alpha )>0\) and \(\frac{\alpha -N}{2}\not \in \mathbb {N}\cup \{0\}\); however then the convolution \(I_\alpha *f\) should be interpreted in the distributional sense; see, for example ([120] or [182, chapter 2]) for a more recent exposition. In this survey we always assume that \(\alpha \in (0,N)\) and the convolution \(I_\alpha *f\) is understood in the sense of the Lebesgue integral.

1.2 \(L^p\)–estimates

The Riesz potential of order \(\alpha \in (0,N)\) of a function \(f\in L^1_{\mathrm {loc}}(\mathbb {R}^N)\) is defined as

$$\begin{aligned} I_\alpha *f(x):=A_\alpha \int _{\mathbb {R}^N}\frac{f(y)}{|x-y |^{N - \alpha }}\mathrm{d}y. \end{aligned}$$

The latter integral converges in the classical Lebesgue sense for a.e. \(x\in \mathbb {R}^N\) if and only if

$$\begin{aligned} f\in L^1\big (\mathbb {R}^N,(1+|x|)^{-(N-\alpha )}\mathrm{d}x\big ), \end{aligned}$$
(A.1)

Moreover, if (A.1) does not hold then \(I_\alpha *|f|=+\infty \) everywhere in \(\mathbb {R}^N\) [120, p.61–62].

The Riesz potential \(I_\alpha \) is well–defined as an operator on the whole space \(L^q(\mathbb {R}^N)\) if and only if \(q\in [1,\frac{N}{\alpha })\). The Hardy–Littlewood–Sobolev inequality ([107, theorem 382]; [187]) (see also [129, theorem V.1]; [189, theorem 4.3]), which states that if \(q \in (1, \infty )\) and if \(\alpha < \frac{N}{q}\), then for every \(f \in L^q (\mathbb {R}^N)\), we have \(I_\alpha *f \in L^{\frac{Nq}{N - \alpha q}} (\mathbb {R}^N)\) and

$$\begin{aligned} \left( \int _{\mathbb {R}^N} \bigl |I_\alpha *f \bigr |^\frac{Nq}{N - \alpha q}\right) ^{\frac{1}{q} - \frac{\alpha }{N}} \le C_{N, \alpha , q} \left( \int _{\mathbb {R}^N} |f |^q\right) ^\frac{1}{q}. \end{aligned}$$
(A.2)

If \(q=\frac{2N}{N + \alpha }\), then the optimal constant is given by ([84, 128]; [129, theorem 4.3])

$$\begin{aligned} C_{N, \alpha , q} = \frac{\Gamma (\frac{N - \alpha }{2})}{2^\alpha \pi ^{\alpha /2} \Gamma (\frac{N + \alpha }{2}) } \biggl (\frac{\Gamma (\frac{N}{2})}{\Gamma (N)}\biggr )^\frac{\alpha }{N}. \end{aligned}$$
(A.3)

The inequality (A.2) implies that if \(q \in (1, \infty )\), \(\alpha < \frac{N}{q}\) and \(\frac{1}{r}=\frac{1}{q}-\frac{\alpha }{N}\), then

$$\begin{aligned}I_\alpha : L^q (\mathbb {R}^N)\rightarrow L^{r} (\mathbb {R}^N)\end{aligned}$$

is a bounded linear operator. If \(f\in L^1(\mathbb {R}^N)\), then in general \(I_\alpha *f\not \in L^\frac{N}{N-\alpha }(\mathbb {R}^N)\) (see for example [189, §V.1.2]); however,

$$\begin{aligned} I_\alpha : L^1 (\mathbb {R}^N)\rightarrow L^{r}\big (\mathbb {R}^N,(1+|x|)^{-\lambda }dx\big ) \end{aligned}$$

is a bounded operator for any \(r\in [1,\frac{N}{N-\alpha })\) and \(\lambda >N-r(N-\alpha )\) [182, p.38]. When \(q\ge \frac{N}{\alpha }\) then \(I_\alpha \) is not well defined on the whole space \(L^q(\mathbb {R}^N)\). However, if \(f\in L^{\frac{N}{\alpha }}(\mathbb {R}^N)\) and we additionally assume that \(I_\alpha *f\) is almost everywhere finite on \(\mathbb {R}^N\), then \(I_\alpha *f\) is a function of bounded mean oscillation (BMO) ([155, theorem 7]; [191, theorem 2]). If \(I_\alpha *f\) is almost everywhere finite on \(\mathbb {R}^N\), \(f\in L^{q}(\mathbb {R}^N)\) and \(\frac{N}{q}<\alpha <\frac{N}{q}+1\), then \(I_\alpha *f\) is Hölder continuous of order \(\alpha -\frac{N}{q}\) [76, theorem 2].

These mapping properties of the Riesz potentials are important not only as a tool to control the domain of definition of the action functional of the Choquard equation but also in the study of the regularity properties of solutions by bootstrap type procedures (see Sect. 3.3.1).

The weighted version of the Hardy–Littlewood–Sobolev inequality due to Stein and Weiss [190] states that if \(q \in (1, \infty )\), \(s<N (1 - \frac{1}{q})\), \(t<\frac{N}{r}\), \(s+t\ge 0\), \(q\le r<+\infty \) and \(\frac{1}{r}=\frac{1}{q}+\frac{s+t-\alpha }{N}\), then for any \(f\in L^q(\mathbb {R}^N,|x|^{sq}\,\mathrm {d}x)\),

$$\begin{aligned} \left( \int _{\mathbb {R}^N} \bigl |I_\alpha *f(x) \bigr |^r|x|^{-rt} \mathrm{d}x\right) ^{\frac{1}{r}} \le C \left( \int _{\mathbb {R}^N} |f(x) |^q|x|^{sq} \mathrm{d}x\right) ^\frac{1}{q}. \end{aligned}$$
(A.4)

When \(r=q\) the estimate (A.4) is also known as the Hardy–Rellich inequality. Optimal constants for (A.4) are available in some special cases, see [19, 20, 108, 149, 183, 214].

Rubin [176] has proved that for radial functions \(f\in L^q_{\mathrm {rad}}(\mathbb {R}^N,|x|^{sq}\,\mathrm {d}x)\) the same inequality (A.4) holds for a wider range \(s+t\ge -(N-1)\big (\frac{1}{q}-\frac{1}{r}\big )\) (see also [69, 75]). Weighted inequalities of Stein–Weiss type become important in the analysis of nonautonomous Choquard equations with confining (Sect. 4.1.3) or decaying (Sect. 4.1.7) potentials.

1.3 Energy properties

The Riesz potential \(I_\alpha \) naturally induces the quadratic form \(D_\alpha \) defined by

$$\begin{aligned} D_{\alpha }(f,g):=A_\alpha \iint _{\mathbb {R}^N \times \mathbb {R}^N}\frac{f(x)g(y)}{|x-y |^{N - \alpha }}\,\mathrm {d}y\,\mathrm {d}x. \end{aligned}$$

A direct consequence of the semigroup property (A.1) is the inequality

$$\begin{aligned} D_{\alpha }(f,f) =\int _{\mathbb {R}^N} \bigl (I_\alpha *f) f =\int _{\mathbb {R}^N}\big |I_{\alpha /2}*f|^2\ge 0, \end{aligned}$$
(A.5)

valid for all functions f such that \(D_\alpha (|f|,|f|)<+\infty \). Moreover, \(D_\alpha (f,f)=0\) if and only if \(f\equiv 0\) [120, theorem 1.15].

The Riesz–Sobolev rearrangement inequality states that for any two nonnegative functions fg such that \(D(f,g)<+\infty \),

$$\begin{aligned} D_\alpha (f^*,g^*)\le D_\alpha (f,f), \end{aligned}$$
(A.6)

where \(f^*\) denotes the symmetric decreasing rearrangement of f. It was first established by Riesz [172] in one dimension; then Sobolev [187] extended the result to \(\mathbb {R}^N\) (see also [31]). The equality in (A.6) occurs if and only if f is the translation of radially symmetric and nonincreasing function ([38]; [127, lemma 3]; [129, §3.7–3.9]). Inequality (A.6) is fundamental in the study of radial symmetry of groundstates of Choquard equation (Sect. 3.3.3).

1.4 Positivity and decay estimates

When the function \(f\in L^1_{\mathrm {loc}}(\mathbb {R}^N)\) is nonnegative, an elementary estimate shows that for every \(x\in \mathbb {R}^N\),

$$\begin{aligned}I_\alpha *f(x)\ge \frac{A_\alpha }{R^{N-\alpha }}\int _{B_R(x)}f(y)\,\mathrm {d}y.\end{aligned}$$

In particular, if the function f is positive on a set of positive measure of \(\mathbb {R}^N\), then \(I_\alpha *f\) is everywhere strictly positive on \(\mathbb {R}^N\). Similarly, for each \(x\in \mathbb {R}^N\) one can estimate

$$\begin{aligned} I_\alpha *f(x)\ge \frac{A_\alpha }{(2|x|)^{N-\alpha }}\int _{B_{2|x|}(x)}f(y)\,\mathrm {d}y\ge \frac{c}{|x|^{N-\alpha }}, \end{aligned}$$
(A.7)

that is, \(I_\alpha *f\) cannot decay faster than \(I_\alpha \) at infinity, even if the function f is compactly supported.

These decay properties of the Riesz potential are essential for the study of asymptotic decay of groundstates of Choquard equations (Sect. 3.3.4) and Liouville’s theorems (Sect. 4.1.6). To illustrate the decay of the Riesz potentials at infinity, assume that the pointwise bound

$$\begin{aligned} \limsup _{|x | \rightarrow \infty } f(x) |x |^\gamma <+\infty \end{aligned}$$

holds. Then, by a direct computation [150, lemma A.1],

$$\begin{aligned}&\limsup _{|x | \rightarrow \infty }\, (I_\alpha *f)(x)\,|x |^{\gamma -\alpha }<+\infty \quad \text {if }\alpha<\gamma<N,\\&\limsup _{|x | \rightarrow \infty }\, (I_\alpha *f)(x) \frac{|x |^{N - \alpha }}{\log |x |}<+\infty \quad \text {if } \gamma =N,\\&\limsup _{|x | \rightarrow \infty }\, (I_\alpha *f)(x)\,|x |^{N - \alpha } <+\infty \quad \text {if }\gamma >N, \end{aligned}$$

and the bounds are optimal, as can be seen by choosing \(f(x)=(1+|x|)^{-\gamma }\) in the case \(\gamma \ge N\), and by comparing with (A.7) in the case \(\gamma >N\).

If \(\gamma >N\), then the decay of \(I_\alpha *f\) explicitly depends on \(\Vert f\Vert _{L^1(\mathbb {R}^N)}\). More specifically [151, lemma 6.2], assume that

$$\begin{aligned} \sup _{\mathbb {R}^N}|f(x)|(1+|x|)^\gamma <+\infty , \end{aligned}$$
(A.8)

for some \(\gamma >N\). Then

$$\begin{aligned} I_\alpha *f(x)=\Big (I_\alpha (x)\int _{\mathbb {R}^N} f (y) \,\mathrm {d}y\Big )\big (1+o(1)\big )\quad \text {as }\quad |x|\rightarrow \infty . \end{aligned}$$
(A.9)

Note that the assumption \(f\in L^1(\mathbb {R}^N)\) alone does not imply that \(I_\alpha *f=O(|x|^{-(N-\alpha )})\) even if f is radial: some additional control on the decay of f at infinity is always needed [186]. However, if f is radial and \(\alpha >1\), then \(I_\alpha *f=O(|x|^{-(N-\alpha )})\) if and only if \(f\in L^1_{\mathrm {rad}}(\mathbb {R}^N)\) [186, theorem 5.A]. Radial estimates on the Riesz potentials could be found in [69, 75, 145, 176, 199].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moroz, V., Van Schaftingen, J. A guide to the Choquard equation. J. Fixed Point Theory Appl. 19, 773–813 (2017). https://doi.org/10.1007/s11784-016-0373-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-016-0373-1

Keywords

Mathematics Subject Classification

Navigation