Skip to main content

Advertisement

Log in

Generalized Bakry–Émery Curvature Condition and Equivalent Entropic Inequalities in Groups

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study a generalization of the Bakry–Émery pointwise gradient estimate for the heat semigroup and its equivalence with some entropic inequalities along the heat flow and Wasserstein geodesics for metric-measure spaces with a suitable group structure. Our main result applies to Carnot groups of any step and to the \({\mathbb {S}}{\mathbb {U}}(2)\) group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev, A., Lee, P.: Optimal transportation under nonholonomic constraints. Trans. Am. Math. Soc. 361(11), 6019–6047 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrachev, A., Lee, P.: Generalized Ricci curvature bounds for three dimensional contact sub Riemannian manifolds. Math. Ann. 360(1–2), 209–253 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agrachev, A., Zelenko, I.: Geometry of Jacobi curves. I. J. Dyn. Control Syst. 8(1), 93–140 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agrachev, A., Zelenko, I.: Geometry of Jacobi curves. II. J. Dyn. Control Syst. 8(2), 167–215 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agrachev, A., Barilari, D., Rizzi, L.: Sub-Riemannian curvature in contact geometry. J. Geom. Anal. 27(1), 366–408 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Agrachev, A., Barilari, D., Rizzi, L.: Curvature: a variational approach. Mem. Am. Math. Soc. 256(1225), v+42 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Agrachev, A., Barilari, D., Boscain, U.: A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Studies in Advanced Mathematics, vol. 181. Cambridge University Press, Cambridge (2020)

    MATH  Google Scholar 

  8. Ambrosio, L., Gigli, N.: A user’s guide to optimal transport, Modelling and optimisation of flows on networks. Lecture Notes in Math., vol. 2062, Springer, Heidelberg, pp. 1–155, (2013)

  9. Ambrosio, L., Rigot, S.: Optimal mass transportation in the Heisenberg group. J. Funct. Anal. 208(2), 261–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ambrosio, L., Stefani, G.: Heat and entropy flows in Carnot groups. Rev. Mat. Iberoam. 36(1), 257–290 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, (2008)

  12. Ambrosio, L., Savaré, G., Zambotti, L.: Existence and stability for Fokker–Planck equations with log-concave reference measure. Probab. Theory Related Fields 145(3–4), 517–564 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ambrosio, L., Gigli, N., Savaré, G.: Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam. 29(3), 969–996 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289–391 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163(7), 1405–1490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ambrosio, L., Colombo, M., Di Marino, S.: Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope, Variational methods for evolving objects, Adv. Stud. Pure Math., vol.67, Math. Soc. Japan, Tokyo, 1–58, (2015)

  17. Ambrosio, L., Gigli, N., Mondino, A., Rajala, T.: Riemannian Ricci curvature lower bounds in metric measure spaces with -finite measure. Trans. Am. Math. Soc. 367(7), 4661–4701 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ambrosio, L., Gigli, N., Savaré, G.: Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab. 43(1), 339–404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ambrosio, L., Ghezzi, R., Magnani, V.: BV functions and sets of finite perimeter in sub-Riemannian manifolds. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(3), 489–517 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ambrosio, L., Mondino, A., Savaré, G.: Nonlinear diffusion equations and curvature conditions in metric measure spaces. Mem. Am. Math. Soc. 262, 1270 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Badreddine, Z.: Mass transportation on sub-Riemannian structures of rank two in dimension four. Ann. Inst. H. Poincaré Anal. Non Linéaire 36(3), 837–860 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bakry, D., Émery, M.: Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., 1123, Springer, Berlin, (1985), pp. 177–206

  23. Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory, (Saint-Flour, 1992), Lecture Notes in Math., vol. 1581. Springer, Berlin, pp. 1–114 (French) (1994)

  24. Bakry, D.: Functional inequalities for Markov semigroups, Probability measures on groups: recent directions and trends, pp. 91–147. Mumbai, Tata Inst. Fund. Res. (2006)

  25. Bakry, D., Ledoux, M.: A logarithmic Sobolev form of the Li-Yau parabolic inequality. Rev. Mat. Iberoam. 22(2), 683–702 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bakry, D., Baudoin, F., Michel, C., Djalil: On gradient bounds for the heat kernel on the Heisenberg group. J. Funct. Anal. 255(8), 1905–1938 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 348. Springer, Cham (2014)

    MATH  Google Scholar 

  28. Bakry, D., Gentil, I., Ledoux, M.: On Harnack inequalities and optimal transportation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14(3), 705–727 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Balogh, Z.M., Kristály, A., Sipos, K.: Geometric inequalities on Heisenberg groups. Calc. Var. Partial Differ. Equ. 57(2), 41 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Balogh, Z.M., Kristály, A., Sipos, K.: Jacobian determinant inequality on Corank 1 Carnot groups with applications. J. Funct. Anal. 277(12), 108293 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Barilari, D., Ivanov, S.: A Bonnet-Myers type theorem for quaternionic contact structures. Calc. Var. Partial Differ. Equ. 58, 26 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Barilari, D., Rizzi, L.: Comparison theorems for conjugate points in sub-Riemannian geometry. ESAIM Control Optim. Calc. Var. 22(2), 439–472 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Barilari, D., Rizzi, L.: On Jacobi fields and a canonical connection in sub-Riemannian geometry. Arch. Math. (Brno) 53(2), 77–92 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Barilari, D., Rizzi, L.: Sharp measure contraction property for generalized H-type Carnot groups. Commun. Contemp. Math. 20, 1750081 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Barilari, D., Rizzi, L.: Sub-Riemannian interpolation inequalities. Invent. Math. 215(3), 977–1038 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Barilari, D., Rizzi, L.: Bakry–Émery curvature and model spaces in sub-Riemannian geometry. Math. Ann. 377(1–2), 435–482 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Baudoin, F.: Bakry–Émery meet Villani. J. Funct. Anal. 273(7), 2275–2291 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Baudoin, F., Bonnefont, M.: The subelliptic heat kernel on \({\rm SU}(2)\): representations, asymptotics and gradient bounds. Math. Z. 263(3), 647–672 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Baudoin, F., Bonnefont, M.: Curvature-dimension estimates for the Laplace–Beltrami operator of a totally geodesic foliation. Nonlinear Anal. 126, 159–169 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Baudoin, F., Bonnefont, M.: Reverse Poincaré inequalities, isoperimetry, and Riesz transforms in Carnot groups. Nonlinear Anal. 131, 48–59 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Baudoin, F., Cecil, M.: The subelliptic heat kernel on the three-dimensional solvable Lie groups. Forum Math. 27(4), 2051–2086 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Baudoin, F., Garofalo, N.: Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. J. Eur. Math. Soc. (JEMS) 19(1), 151–219 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Baudoin, F., Kelleher, D.J.: Differential one-forms on Dirichlet spaces and Bakry–Émery estimates on metric graphs. Trans. Am. Math. Soc. 371(5), 3145–3178 (2019)

    Article  MATH  Google Scholar 

  44. Baudoin, F., Kim, B.: Sobolev, Poincaré, and isoperimetric inequalities for subelliptic diffusion operators satisfying a generalized curvature dimension inequality. Rev. Mat. Iberoam. 30(1), 109–131 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Baudoin, F., Wang, J.: Curvature dimension inequalities and subelliptic heat kernel gradient bounds on contact manifolds. Potential Anal. 40(2), 163–193 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Baudoin, F., Bonnefont, M., Garofalo, N.: A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality. Math. Ann. 358(3–4), 833–860 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  47. Baudoin, F., Bonnefont, M., Garofalo, N., Munive, I.H.: Volume and distance comparison theorems for sub-Riemannian manifolds. J. Funct. Anal. 267(7), 2005–2027 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Bejancu, A.: Curvature in sub-Riemannian geometry. J. Math. Phys. 53(2), 023513 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Bejancu, A., Farran, H.R.: Curvature of \(CR\) manifolds. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 59(1), 43–72 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Berestovskii, V.N.: Curvatures of homogeneous sub-Riemannian manifolds. Eur. J. Math. 3(4), 788–807 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Biroli, M., Mosco, U.: A Saint-Venant type principle for Dirichlet forms on discontinuous media. Ann. Mat. Pura Appl. (4) 169, 125–181 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  52. Bogachev, V.I.: Measure Theory, vol. I, II. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  53. Bolley, F., Gentil, I., Guillin, A.: Dimensional contraction via Markov transportation distance. J. Lond. Math. Soc. (2) 90(1), 309–332 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Bolley, F., Gentil, I., Guillin, A., Kuwada, K.: Equivalence between dimensional contractions in Wasserstein distance and the curvature-dimension condition. Ann. Sci. Norm. Super. Pisa Cl. Sci. 18, 3 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  56. Bouleau, N., Hirsch, F.: Dirichlet Forms and Analysis on Wiener Space, De Gruyter Studies in Mathematics, vol. 14. Walter de Gruyter & Co., Berlin (1991)

    Book  MATH  Google Scholar 

  57. Brézis, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, (French). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50) (1973)

  58. Brézis, H.: Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, (2011)

  59. Carlen, E.A., Kusuoka, S., Stroock, D.W.: Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Stat. 23, 245–287 (1987)

    MathSciNet  MATH  Google Scholar 

  60. Cavalletti, F., Mondino, A.: Measure rigidity of Ricci curvature lower bounds. Adv. Math. 286, 430–480 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Cavalletti, F., Mondino, A.: Optimal maps in essentially non-branching spaces. Commun. Contemp. Math. 19(6), 1750007 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  62. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  63. Cheng, L.-J., Thalmaier, A., Zhang, S.-Q.: Exponential contraction in Wasserstein distance on static and evolving manifolds. Rev. Roumaine Math. Pures Appl. 66(1), 107–129 (2021)

    MathSciNet  Google Scholar 

  64. Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146(2), 219–257 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  65. Coulhon, T., Jiang, R., Koskela, P., Sikora, A.: Gradient estimates for heat kernels and harmonic functions. J. Funct. Anal. 278(8), 108398 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  66. Cowling, M., Sikora, A.: A spectral multiplier theorem for a sublaplacian on \({{\rm SU}}(2)\). Math. Z. 238(1), 1–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  67. Daneri, S., Savaré, G.: Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40(3), 1104–1122 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  68. Le Donne, E.: A primer on Carnot groups: Homogenous groups, Carnot–Carathéodory spaces, and regularity of their isometries. Anal. Geom. Metr. Spaces 5, 116–137 (2017)

  69. Le Donne, E. Lučić, D., Pasqualetto, E.: Universal infinitesimal Hilbertianity property of sub-Riemannian manifolds. arxiv:1910.05962 (2019)

  70. Driver, B.K., Melcher, T.: Hypoelliptic heat kernel inequalities on the Heisenberg group. J. Funct. Anal. 221(2), 340–365 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  71. Durrett, R.: Probability: Theory and Examples, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 49. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  72. Erbar, M.: The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincaré Probab. Stat. 46(1), 1–23 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  73. Erbar, M., Kuwada, K., Sturm, K.T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201(3), 993–1071 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  74. Federer, H.: Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969)

    Google Scholar 

  75. Feng, Q., Li, W.: Generalized Gamma \(z\) calculus via sub-Riemannian density manifold. (2019) arxiv:1910.07480

  76. Feng, Q., Li, W.: Sub-Riemannian Ricci curvature via generalized Gamma \(z\) calculus. (2020) arxiv:2004.01863

  77. Figalli, A., Juillet, N.: Absolute continuity of Wasserstein geodesics in the Heisenberg group. J. Funct. Anal. 255(1), 133–141 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  78. Figalli, A., Rifford, L.: Mass transportation on sub-Riemannian manifolds. Geom. Funct. Anal. 20(1), 124–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  79. Folland, G.B.: Real Analysis. Modern Techniques and Their Applications Pure and Applied Mathematics, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  80. Folland, G.B.: A Course in Abstract Harmonic Analysis, Textbooks in Mathematics, 2nd edn. CRC Press, Boca Raton (2016)

    Book  MATH  Google Scholar 

  81. Gentil, I.: Dimensional contraction in Wasserstein distance for diffusion semigroups on a Riemannian manifold. Potential Anal. 42(4), 861–873 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  82. Gigli, N.: On the heat flow on metric measure spaces: Existence, uniqueness and stability. Calc. Var. Partial Differ. Equ. 39(1–2), 101–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  83. Gigli, N.: An overview of the proof of the splitting theorem in spaces with non-negative Ricci curvature. Anal. Geom. Metr. Spaces 2(1), 169–213 (2014)

    MathSciNet  MATH  Google Scholar 

  84. Gigli, N.: On the differential structure of metric measure spaces and applications. Mem. Am. Math. Soc. 236(1113), vi+91 (2015)

    MathSciNet  MATH  Google Scholar 

  85. Gigli, N., Mantegazza, C.: A flow tangent to the Ricci flow via heat kernels and mass transport. Adv. Math. 250, 74–104 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  86. Gigli, N., Kuwada, K., Ohta, S.-I.: Heat flow on Alexandrov spaces. Commun. Pure Appl. Math. 66(3), 307–331 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  87. Grong, E.: Affine connections and curvature in sub-Riemannian Geometry. (2020) arxiv:2001.03817

  88. Grong, E.: Model spaces in sub-Riemannian geometry. Commun. Anal. Geom. 29(1), 77–113 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  89. Grong, E., Thalmaier, A.: Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: part I. Math. Z. 282(1–2), 99–130 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  90. Grong, E., Thalmaier, A.: Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: part II. Math. Z. 282(1–2), 131–164 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  91. Grong, E., Thalmaier, A.: Stochastic completeness and gradient representations for sub-Riemannian manifolds. Potential Anal. 51(2), 219–254 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  92. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev Spaces on Metric Measure Spaces. An Approach Based on Upper Gradients, New Mathematical Monographs, vol. 27. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  93. Hille, E., Phillips, R. S.: Functional Analysis and Semi-Groups, American Mathematical Society, Providence, R. I. Third printing of the revised edition of 1957; American Mathematical Society Colloquium Publications, vol. XXXI. (1974)

  94. Hladky, R.K.: Connections and curvature in sub-Riemannian geometry. Houston J. Math. 38(4), 1107–1134 (2012)

    MathSciNet  MATH  Google Scholar 

  95. Hu, J.-Q., Li, H.-Q.: Gradient estimates for the heat semigroup on H-type groups. Potential Anal. 33(4), 355–386 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  96. Huang, Y., Sun, S.: Non-embedding theorems of nilpotent Lie groups and sub-Riemannian manifolds. Front. Math. China 15(1), 91–114 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  97. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  98. Juillet, N.: Geometric inequalities and generalized Ricci bounds in the Heisenberg group. Int. Math. Res. Not. IMRN 13, 2347–2373 (2009)

    MathSciNet  MATH  Google Scholar 

  99. Juillet, N.: Diffusion by optimal transport in Heisenberg groups. Calc. Var. Partial Differ. Equ. 50(3–4), 693–721 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  100. Juillet, N.: Sub-Riemannian structures do not satisfy Riemannian Brunn–Minkowski inequalities. Rev. Mat. Iberoam. 37(1), 177–188 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  101. Khesin, B., Lee, P.: A nonholonomic Moser theorem and optimal transport. J. Symplectic Geom. 7(4), 381–414 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  102. Kuwada, K.: Duality on gradient estimates and Wasserstein controls. J. Funct. Anal. 258(11), 3758–3774 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  103. Kuwada, K.: Gradient estimate for Markov kernels, Wasserstein control and Hopf-Lax formula, Potential theory and its related fields, RIMS Kôkyûroku Bessatsu, B43, Res. Inst. Math. Sci. (RIMS), Kyoto, 61–80 (2013)

  104. Kuwada, K.: Space-time Wasserstein controls and Bakry–Ledoux type gradient estimates. Calc. Var. Partial Differ. Equ. 54(1), 127–161 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  105. Lee, P., Li, C., Zelenko, I.: Ricci curvature type lower bounds for sub-Riemannian structures on Sasakian manifolds. Discrete Contin. Dyn. Syst. 36(1), 303–321 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  106. Li, H.-Q.: Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg. J. Funct. Anal. 236(2), 369–394 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  107. Lisini, S.: Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. Partial Differ. Equ. 28(1), 85–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  108. Lott, J., Villani, C.: Weak curvature conditions and functional inequalities. J. Funct. Anal. 245(1), 311–333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  109. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. (2) 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  110. Lučić, D., Pasqualetto, E.: Infinitesimal Hilbertianity of weighted Riemannian manifolds. Can. Math. Bull. 63(1), 118–140 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  111. Melcher, T.: Hypoelliptic heat kernel inequalities on Lie groups. Stochastic Process. Appl. 118(3), 368–388 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  112. Mietton, T., Rizzi, L.: Branching geodesics in sub-Riemannian geometry. Geom. Funct. Anal. (2020)

  113. Milman, E.: The quasi curvature-dimension condition with applications to sub-Riemannian manifolds. Commun. Pure Appl. Math. (2019) arxiv:1908.01513

  114. Mitchell, J.: On Carnot–Carathéodory metrics. J. Differ. Geom. 21(1), 35–45 (1985)

    Article  MATH  Google Scholar 

  115. Montgomery, R.: A Tour of Sub-Riemannian Geometries, Their Geodesics and Applications. Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence (2002)

    Google Scholar 

  116. Munive, I.H.: Sub-Riemannian curvature of Carnot groups with rank-two distributions. J. Dyn. Control Syst. 23(4), 779–814 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  117. Ohta, S.-I.: On the measure contraction property of metric measure spaces. Comment. Math. Helv. 82(4), 805–828 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  118. Ohta, S.-I.: \((K, N)\)-convexity and the curvature-dimension condition for negative \(N\). J. Geom. Anal. 26(3), 2067–2096 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  119. Ohta, S.-I., Sturm, K.-T.: Heat flow on Finsler manifolds. Commun. Pure Appl. Math. 62(10), 1386–1433 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  120. Ohta, S.-I., Sturm, K.-T.: Bochner–Weitzenböck formula and Li-Yau estimates on Finsler manifolds. Adv. Math. 252, 429–448 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  121. Otto, F.: The geometry of dissipative evolution equations: The porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  122. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  123. Otto, F., Westdickenberg, M.: Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal. 37(4), 1227–1255 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  124. De Pascale, L., Rigot, S.: Monge’s transport problem in the Heisenberg group. Adv. Calc. Var. 4(2), 195–227 (2011)

  125. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    MATH  Google Scholar 

  126. Rajala, T.: Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc. Var. Partial Differ. Equ. 44(3–4), 477–494 (2012)

    Article  MATH  Google Scholar 

  127. Rigot, S.: Mass transportation in groups of type \(H\). Commun. Contemp. Math. 7(4), 509–537 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  128. Rizzi, L.: Measure contraction properties of Carnot groups. Calc. Var. Partial Differ. Equ. 55, 20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  129. Rizzi, L., Silveira, P.: Sub-Riemannian Ricci curvatures and universal diameter bounds for 3-Sasakian manifolds. J. Inst. Math. Jussieu 18(4), 783–827 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  130. Savaré, G.: Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in \({\rm RCD}(K,\infty )\) metric measure spaces. Discrete Contin. Dyn. Syst. 34(4), 1641–1661 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  131. Stollmann, P.: A dual characterization of length spaces with application to Dirichlet metric spaces. Studia Math. 198(3), 221–233 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  132. Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24(2), 221–263 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  133. Strichartz, R. S., Corrections to: “Sub-Riemannian geometry” [J. Differential Geom. 24 (1986), no. 2, 221–263], J. Differential Geom. 30, (1989), 595–596

  134. Sturm, K.-T.: The geometric aspect of Dirichlet forms, New directions in Dirichlet forms, AMS/IP Stud. Adv. Math., vol.8, Amer. Math. Soc., Providence, RI, 233–277 (1998)

  135. Sturm, K.-T.: Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math. 32(2), 275–312 (1995)

    MathSciNet  MATH  Google Scholar 

  136. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  137. Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196(1), 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  138. Sturm, K.-T.: Distribution-valued Ricci bounds for metric measure spaces, singular time changes, and gradient estimates for Neumann heat flows. Geom. Funct. Anal. 30(6), 1648–1711 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  139. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  140. Villani, C.: Optimal Transport, Old and New, Fundamental Principles of Mathematical Sciences, vol. 338. Springer, Berlin (2009)

    MATH  Google Scholar 

  141. Villani, C.: Inégalités isopérimétriques dans les espaces métriques mesurés [d’après F. Cavalletti & A. Mondino], Astérisque, (407), (2019), Exp. No. 1127, 213–265 (French), Séminaire Bourbaki. Vol. 2016/2017. Exposés 1120–1135

  142. von Renesse, M.-K., Sturm, K.-T.: Transport inequalities, gradient estimates, entropy, and Ricci curvature. Commun. Pure Appl. Math. 58(7), 923–940 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  143. Wang, F.-Y.: Equivalent semigroup properties for the curvature-dimension condition. Bull. Sci. Math. 135(6–7), 803–815 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  144. Wang, F.-Y.: Derivative formula and gradient estimates for Gruschin type semigroups. J. Theoret. Probab. 27(1), 80–95 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  145. Wang, F.-Y.: Exponential contraction in Wasserstein distances for diffusion semigroups with negative curvature. Potential Anal. 53(3), 1123–1144 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  146. Zelenko, I., Li, C.: Differential geometry of curves in Lagrange Grassmannians with given Young diagram. Differ. Geom. Appl. 27(6), 723–742 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  147. Zhang, H.-C., Zhu, X.-P.: Yau’s gradient estimates on Alexandrov spaces. J. Differ. Geom. 91(3), 445–522 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Luigi Ambrosio and Giuseppe Savaré for helpful discussions and many valuable suggestions about the subject. The author also thanks the anonymous referee for precious comments and for pointing the reference [145]. The author is partially supported by the ERC Starting Grant 676675 FLIRT – Fluid Flows and Irregular Transport. The author is a member of INdAM and is partially supported by the INdAM–GNAMPA Project 2020 Problemi isoperimetrici con anisotropie (n. prot. U-UFMBAZ-2020-000798 15-04-2020)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Stefani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefani, G. Generalized Bakry–Émery Curvature Condition and Equivalent Entropic Inequalities in Groups. J Geom Anal 32, 136 (2022). https://doi.org/10.1007/s12220-021-00762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-021-00762-6

Keywords

Mathematics Subject Classification

Navigation