Skip to main content

Advertisement

Log in

A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let \(\mathbb M \) be a smooth connected manifold endowed with a smooth measure \(\mu \) and a smooth locally subelliptic diffusion operator \(L\) satisfying \(L1=0\), and which is symmetric with respect to \(\mu \). We show that if \(L\) satisfies, with a non negative curvature parameter, the generalized curvature inequality introduced by the first and third named authors in http://arxiv.org/abs/1101.3590, then the following properties hold:

  • The volume doubling property;

  • The Poincaré inequality;

  • The parabolic Harnack inequality.

The key ingredient is the study of dimension dependent reverse log-Sobolev inequalities for the heat semigroup and corresponding non-linear reverse Harnack type inequalities. Our results apply in particular to all Sasakian manifolds whose horizontal Webster–Tanaka–Ricci curvature is nonnegative, all Carnot groups of step two, and to wide subclasses of principal bundles over Riemannian manifolds whose Ricci curvature is nonnegative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev, A., Lee, P.: Generalized Ricci curvature bounds for three dimensional contact sub-Riemannian manifolds, Arxiv preprint (2009). http://arxiv.org/pdf/0903.2550.pdf

  2. Ambrosio, L., Tilli, P.: Topics on analysis in metric spaces. In: Oxford Lecture Series in Mathematics and its Applications, vol. 25. Oxford University Press, Oxford (2004)

  3. Bakry, D.: Un critère de non-explosion pour certaines diffusions sur une variété riemannienne complète. C. R. Acad. Sci. Paris Sér. I. Math. 303(1), 23–26 (1986)

  4. Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. Ecole d’Eté de Probabilites de St-Flour. In: Lecture Notes in Math. Springer, Berlin (1994)

  5. Bakry, D.: Functional inequalities for Markov semigroups. Probability measures on groups: recent directions and trends, pp. 91–147. Tata Inst. Fund. Res., Mumbai (2006)

  6. Bakry, D., Emery, M.: Diffusions hypercontractives Sémin. de probabilités XIX. Univ. Strasbourg. Springer, Berlin (1983)

  7. Baudoin, F., Bonnefont, M.: Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality. J. Funct. Anal. 262, 2646–2676 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Baudoin, F., Garofalo, N.: Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries, Arxiv preprint. http://arxiv.org/abs/1101.3590

  9. Baudoin, F., Garofalo, N.: Perelman’s entropy and doubling property on Riemannian manifolds. J. Geom. Anal. (2013, to appear)

  10. Buser, P.: A note on the isoperimetric constant. Ann Scient de l’ÉNS \(4^e\) série 15(2), 213–230 (1982)

  11. Carlen, E., Kusuoka, S., Stroock, D.: Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. (2) 23(suppl.), 245–287 (1987)

    Google Scholar 

  12. Chavel, I.: Riemannian geometry: a modern introduction. In: Cambridge Tracts in Mathematics, vol. 108. Cambridge Univ. Press, Cambridge (1993)

  13. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Coifman, R., Weiss, G.: Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes. In: Lecture Notes in Math., vol. 242. Springer, Berlin (1971)

  15. Colding, T.H., Minicozzi II, W.P.: Harmonic functions on manifolds. Ann. Math. (2) 146(3), 725–747 (1997)

  16. Danielli, D., Garofalo, N., Nhieu, D.M.: Trace inequalities for Carnot-Carathéodory spaces and applications. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27(2), 195–252 (1998)

    Google Scholar 

  17. Derridj, M.: Un problème aux limites pour une classe d’opérateurs du second ordre hypoelliptiques, (French). Ann. Inst. Fourier (Grenoble) 21(4), 99–148 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fabes, E.B., Stroock, D.: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Rational Mech. Anal. 96(4), 327–338 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Federer, H.: Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band, vol. 153. Springer, New York (1969)

    Google Scholar 

  20. Fefferman, C., Phong, D.H.: Subelliptic eigenvalue problems. Conference on harmonic analysis in honor of Antoni Zygmund, vol. I, II (Chicago, Ill, 1983), pp. 590–606. Wadsworth Math. Ser, Wadsworth, Belmont (1981)

  21. Garofalo, N., Nhieu, D.M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49(10), 1081–1144 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Grigor’yan, A.A.: The heat equation on noncompact Riemannian manifolds (Russian). Mat. Sb. 182(1), 55–87 (1991); translation in Math. USSR-Sb. 72(1), 47–77 (1992)

    Google Scholar 

  23. Grigor’yan, A.A. : Heat Kernel and Analysis on Manifolds, vol. 47. Amer. Math. Soc., Internat. Press. Adv. Math. (2009)

  24. Gyrya, P., Saloff-Coste, L.: Neumann and Dirichlet heat kernels in inner uniform domains, preliminary notes

  25. Hajlasz, P.: Sobolev spaces on metric-measure spaces. Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), pp. 173–218. Contemp. Math., vol. 338. Amer. Math. Soc., Providence (2003)

  26. Hajlasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000), no. 688

    Google Scholar 

  27. Heinonen, J.: Lectures on analysis on metric spaces. Universitext. Springer, New York (2001)

    Book  Google Scholar 

  28. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hino, M., Ramirez, J.: Small-time Gaussian behavior of symmetric diffusion semigroups. Ann. Probab. 31(3), 1254–1295 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hörmander, H.: Hypoelliptic second-order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  31. Jerison, D.S.: The Poincaré inequality for vector fields satisfying Hörmander’s condition. Duke Math. J. 53, 503–523 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  32. Jerison, D., Sánchez-Calle, A.: Subelliptic second order differential operators. Lecture. Notes Math. 1277, 46–77 (1987)

    Article  Google Scholar 

  33. Kusuoka, S., Stroock, D.: Applications of the Malliavin calculus. III. J. Fac. Sci. Univ. Tokyo Sect. \(I\) A Math. 34(2), 391–442 (1987)

  34. Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  35. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169(3), 903–991 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields I: basic properties. Acta Math. 155, 103–147 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  37. Oleinik, O.A., Radkevic, E.V.: Second order equations with nonnegative characteristic form. Translated from the Russian by Paul C. Fife. Plenum Press, London (1973)

    Book  Google Scholar 

  38. Phillips, R.S., Sarason, L.: Elliptic-parabolic equations of the second order. J. Math. Mech. 17, 891–917 (1967/1968)

    Google Scholar 

  39. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Int. Math. Res. Notices 2, 27–38 (1992)

    Article  MathSciNet  Google Scholar 

  40. Saloff-Coste, L.: Aspects of Sobolev-Type Inequalities, p. 289. Cambridge University Press, London Mathematical Society (2002)

  41. Sturm, K.T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and \(L^p\)-Liouville properties. J. Reine Angew. Math. 456, 173–196 (1994)

    MATH  MathSciNet  Google Scholar 

  42. Sturm, K.T.: Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J. Math. 32(2), 275–312 (1995)

    MATH  MathSciNet  Google Scholar 

  43. Sturm, K.T.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J. Math. Pures Appl. (9) 75(3), 273–297 (1996)

    Google Scholar 

  44. Sturm, K.T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  45. Sturm, K.T.: On the geometry of metric measure spaces. II. Acta Math. 196(1), 133–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  46. Varopoulos, N.Th.: Fonctions harmoniques sur les groupes de Lie. (French) [Harmonic functions on Lie groups] C. R. Acad. Sci. Paris Sér. I Math. 304(17), 519–521 (1987)

  47. Varopoulos, N., Saloff-Coste, L., Coulhon, T.: Analysis and geometry on groups. Cambridge Tracts in Mathematics, vol. 100. Cambridge University Press, Cambridge (1992). ISBN: 0-521-35382-3

  48. Yau, S.T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28, 201–228 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  49. Yau, S.T.: On the heat kernel of a complete Riemannian manifold. J. Math. Pures Appl. (9) 57(2), 191–201 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Garofalo.

Additional information

F. Baudoin is supported in part by NSF Grant DMS 0907326. N. Garofalo is supported in part by NSF Grant DMS-1001317.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baudoin, F., Bonnefont, M. & Garofalo, N. A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality. Math. Ann. 358, 833–860 (2014). https://doi.org/10.1007/s00208-013-0961-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0961-y

Navigation