Skip to main content

Advertisement

Log in

Local Poincaré inequalities from stable curvature conditions on metric spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove local Poincaré inequalities under various curvature-dimension conditions which are stable under the measured Gromov–Hausdorff convergence. The first class of spaces we consider is that of weak CD(K, N) spaces as defined by Lott and Villani. The second class of spaces we study consists of spaces where we have a flow satisfying an evolution variational inequality for either the Rényi entropy functional \({\fancyscript{E}_{N}(\rho m) = -\int_{X} {\rho}^{1-1/N} dm}\) or the Shannon entropy functional \({\fancyscript{E}_{\infty}({\rho} m) = \int_{X}{\rho}\log {\rho} dm.}\) We also prove that if the Rényi entropy functional is strongly displacement convex in the Wasserstein space, then at every point of the space we have unique geodesics to almost all points of the space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N.: A users guide to optimal transport. (2011) (Preprint)

  2. Ambrosio L., Gigli N., Savaré G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, second edn. Birkhäuser Verlag, Basel (2008)

    Google Scholar 

  3. Buser P.: A note on the isoperimetric constant. Ann. Sci. cole Norm. Sup. 15, 213–230 (1982)

    MathSciNet  MATH  Google Scholar 

  4. Cheeger J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheeger J., Colding T.: On the structure of spaces with Ricci curvature bounded below. III. J. Differential Geom. 54, 37–74 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Daneri S., Savaré G.: Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40, 1104–1122 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Figalli A., Villani C.: Strong displacement convexity on Riemannian manifolds. Math. Z. 257, 251–259 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gigli, N., Ohta, S.-i.: First variation formula in Wasserstein spaces over compact Alexandrov spaces. Canad. Math. Bull. (to appear) (2010)

  9. Hajłasz P., Koskela P.: Sobolev meets Poincaré. C. R. Acad. Sci. Paris Ser. I Math. 320, 1211–1215 (1995)

    MathSciNet  MATH  Google Scholar 

  10. Hajłasz P., Koskela P.: Sobolev met Poincaré. Mem. Am. Math. Soc. 145, 1–101 (2000)

    Google Scholar 

  11. Heinonen J.: Lectures on Analysis on Metric Spaces. Springer-Verlag, New York (2001)

    Book  MATH  Google Scholar 

  12. Heinonen J., Koskela P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lott J., Villani C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lott J., Villani C.: Weak curvature conditions and functional inequalities. J. Funct. Anal. 245, 311–333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. McCann R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ohta S.-i.: Gradient flows on Wasserstein spaces over compact Alexandrov spaces. Am. J. Math. 131, 475–516 (2009)

    Article  MATH  Google Scholar 

  17. Ohta S.-i.: On the measure contraction property of metric measure spaces. Comment. Math. Helv. 82, 805–828 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. von Renesse M.-K.: On local Poincaré via transportation. Math. Z. 259, 21–31 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Savaré G.: Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds. C. R. Math. Acad. Sci. Paris 345, 151–154 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Semmes S.: Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities. Selecta Math. 2, 155–295 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sturm K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196, 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sturm K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196, 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Villani C.: Optimal transport. Old and new, vol. 338 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapio Rajala.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajala, T. Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc. Var. 44, 477–494 (2012). https://doi.org/10.1007/s00526-011-0442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0442-7

Mathematics Subject Classification (2000)

Navigation