Skip to main content
Log in

On the geometry of metric measure spaces. II

  • Published:
Acta Mathematica

Abstract

We introduce a curvature-dimension condition CD (K, N) for metric measure spaces. It is more restrictive than the curvature bound \(\underline{{{\text{Curv}}}} {\left( {M,{\text{d}},m} \right)} > K\) (introduced in [Sturm K-T (2006) On the geometry of metric measure spaces. I. Acta Math 196:65–131]) which is recovered as the borderline case CD(K, ∞). The additional real parameter N plays the role of a generalized upper bound for the dimension. For Riemannian manifolds, CD(K, N) is equivalent to \({\text{Ric}}_{M} {\left( {\xi ,\xi } \right)} > K{\left| \xi \right|}^{2} \) and dim(M) ⩽ N.

The curvature-dimension condition CD(K, N) is stable under convergence. For any triple of real numbers K, N, L the family of normalized metric measure spaces (M, d, m) with CD(K, N) and diameter ⩽ L is compact.

Condition CD(K, N) implies sharp version of the Brunn–Minkowski inequality, of the Bishop–Gromov volume comparison theorem and of the Bonnet–Myers theorem. Moreover, it implies the doubling property and local, scale-invariant Poincaré inequalities on balls. In particular, it allows to construct canonical Dirichlet forms with Gaussian upper and lower bounds for the corresponding heat kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Tilli, P.: Topics on Analysis in Metric Spaces. Oxford Lecture Series in Mathematics and its Applications, 25. Oxford University Press, Oxford (2004)

    Google Scholar 

  2. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84. Lecture Notes in Math., 1123, pp. 177–206. Springer, Berlin (1985)

    Google Scholar 

  3. Bakry, D., Qian, Z.: Some new results on eigenvectors via dimension, diameter, and Ricci curvature. Adv. Math. 155, 98–153 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chavel, I.: Riemannian Geometry—a Modern Introduction. Cambridge Tracts in Mathematics, 108. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  5. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428–517 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146, 219–257 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gromov, M.: Metric Structures for Riemannian and non-Riemannian Spaces. Progress in Mathematics, 152. Birkhäuser Boston, Boston, MA (1999)

    Google Scholar 

  8. Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5, 403–415 (1996)

    MathSciNet  Google Scholar 

  9. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001)

    Google Scholar 

  10. Korevaar, N.J., Schoen, R.M.: Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom. 1, 561–659 (1993)

    MATH  MathSciNet  Google Scholar 

  11. Kuwae, K., Shioya, T.: On generalized measure contraction property and energy functionals over Lipschitz maps. Potential Anal. 15, 105–121 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kuwae, K., Shioya, T.: Sobolev and Dirichlet spaces over maps between metric spaces. J. Reine Angew. Math. 555, 39–75 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Preprint (2005)

  14. Lott J., Villani, C.: Weak curvature conditions and Poincaré inequalities. Preprint (2005)

  15. Ohta, S.-I.: On measure contraction property of metric measure spaces. Preprint (2006)

  16. von Renesse, M.-K.: Local Poincaré via transportation. To appear in Math. Z

  17. Sturm, K.-T.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. J. Math. Pures Appl. 75, 273–297 (1996)

    MATH  MathSciNet  Google Scholar 

  18. Sturm, K.-T.: Diffusion processes and heat kernels on metric spaces. Ann. Probab. 26, 1–55 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sturm, K.-T.: Convex functionals of probability measures and nonlinear diffusions on manifolds. J. Math. Pures Appl. 84, 149–168 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sturm, K.-T.: A curvature-dimension condition for metric measure spaces. C. R. Math. Acad. Sci. Paris 342, 197–200 (2006)

    MATH  MathSciNet  Google Scholar 

  21. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196, 65–131 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Theodor Sturm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturm, KT. On the geometry of metric measure spaces. II. Acta Math 196, 133–177 (2006). https://doi.org/10.1007/s11511-006-0003-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-006-0003-7

Keywords

Navigation