Skip to main content
Log in

Strategies to Improve Saccharomyces cerevisiae: Technological Advancements and Evolutionary Engineering

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bakery industries are thriving to augment the diverse properties of Saccharomyces cerevisiae to increase its flavor, texture and nutritional parameters to attract the more consumers. The improved technologies adopted for quality improvement of baker’s yeast are attracting the attention of industry and it is playing a pivotal role in redesigning the quality parameters. Modern yeast strain improvement tactics revolve around the use of several advanced technologies such as evolutionary engineering, systems biology, metabolic engineering, genome editing. The review mainly deals with the technologies for improving S. cerevisiae, with the objective of broadening the range of its industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Papasidero D, Pierucci S, Manenti F (2016) Energy optimization of bread baking process undergoing quality constraints. Energy 116:1417–1422. doi:10.1016/j.energy.2016.06.046

    Article  Google Scholar 

  2. Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M (2014) How the sourdough may affect the functional features of leavened baked goods. Food Microbiol 37:30–40. doi:10.1016/j.fm.2013.04.012

    Article  CAS  PubMed  Google Scholar 

  3. Lai HM, Lin TC (2007) Bakery products: science and technology. In: Hui YH (ed) Bakery products: science and technology. Blackwell Publishing, Ames, pp 3–68. doi:10.1002/9780470277553.ch1

  4. Joseph R, Bachhawat AK (2014) Yeasts: production and commercial uses. In: Batt CA, Tortorello ML (eds) Encyclopedia of food microbiology. Academic Press, Oxford, pp 823–830. doi:10.1016/B978-0-12-384730-0.00361-X

  5. Birch AN, Petersen MA, Arneborg N, Hansen AS (2013) Influence of commercial baker’s yeasts on bread aroma profiles. Food Res Int 52:160–166. doi:10.1016/j.foodres.2013.03.011

    Article  CAS  Google Scholar 

  6. Struyf N, Maelen E, Hemdane S, Verspreet J, Verstrepen KJ, Courtin CM (2017) Bread dough and baker’s yeast: an uplifting synergy. Compr Rev Food Sci Food Saf. doi:10.1111/1541-4337.12282

    Google Scholar 

  7. Gibson BR, Lawrence SJ, Leclaire JP, Powell CD, Smart KA (2007) Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev 31:535–569. doi:10.1111/j.1574-6976.2007.00076.x

    Article  CAS  PubMed  Google Scholar 

  8. Yadav R, Kumar V, Baweja M, Shukla P (2016) Gene editing and genetic engineering approaches for advanced probiotics: a review. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2016.1274877

    Google Scholar 

  9. Gupta SK, Shukla P (2017) Gene editing for cell engineering: trends and applications. Crit Rev Biotechnol 37:672–684. doi:10.1080/07388551.2016.1214557

    Article  CAS  PubMed  Google Scholar 

  10. Kumar PS, Singh PK, Shukla P (2014) Systems biology as an approach for deciphering microbial interactions. Brief Funct Genomics 14:23–25. doi:10.1093/bfgp/elu023

    Google Scholar 

  11. Kumar V, Baweja M, Singh PK, Shukla P (2016) Recent developments in systems biology and metabolic engineering of plant–microbe interactions. Front Plant Sci 7:1–12. doi:10.3389/fpls.2016.01421

    Google Scholar 

  12. Pandey B, Saini M, Sharma P (2016) Molecular phylogenetic and sequence variation analysis of dimeric α-amylase inhibitor genes in wheat and its wild relative species. Plant Gene 6:48–58. doi:10.1016/j.plgene.2016.03.004

    Article  CAS  Google Scholar 

  13. Chopda VR, Rathore AS, Gomes J (2015) Maximizing biomass concentration in baker’s yeast process by using a decoupled geometric controller for substrate and dissolved oxygen. Bioresour Technol 196:160–168. doi:10.1016/j.biortech.2015.07.050

    Article  CAS  PubMed  Google Scholar 

  14. Chambers PJ, Bellon JR, Schmidt SA, Varela C, Pretorius IS (2009) Non-genetic engineering approaches for isolating and generating novel yeasts for industrial applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Dordrecht, pp 433–457. doi:10.1007/978-1-4020-8292-4_20

  15. Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ (2014) Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 38:947–995. doi:10.1111/1574-6976.12073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Fact 9:84. doi:10.1186/1475-2859-9-84

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hansen EH, Møller BL, Kock GR, Bünner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 75:2765–2774. doi:10.1128/AEM.02681-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Donalies UEB, Nguyen HTT, Stahl U, Nevoigt E (2008) Improvement of Saccharomyces yeast strains used in brewing, wine making and baking. Adv Biochem Eng Biotechnol 111:67–98. doi:10.1007/10_2008_099

    CAS  PubMed  Google Scholar 

  19. Smit BA, Engels WJM, Smit G (2009) Branched chain aldehydes: production and breakdown pathways and relevance for flavour in foods. Appl Microbiol Biotechnol 81:987–999. doi:10.1007/s00253-008-1758-x

    Article  CAS  PubMed  Google Scholar 

  20. Zhang C, Zhang H, Wang L, Gao H, Guo XN, Yao HY (2007) Improvement of texture properties and flavor of frozen dough by carrot (Daucus carota) antifreeze protein supplementation. J Agric Food Chem 55:9620–9626. doi:10.1021/jf0717034

    Article  CAS  PubMed  Google Scholar 

  21. Pozo-Bayón MA, Guichard E, Cayot N (2006) Flavor control in baked cereal products. Food Rev Int 22:335–379. doi:10.1080/87559120600864829

    Article  Google Scholar 

  22. Carlquist M, Gibson B, Karagul YY, Paraskevopoulou A, Sandell M, Angelov AI, Gotcheva V, Angelov AD, Etschmann M, Billerbeck GM, Lidén G (2015) Process engineering for bioflavour production with metabolically active yeasts—a mini-review. Yeast 32:123–143. doi:10.1002/yea.3058

    CAS  PubMed  Google Scholar 

  23. Sainsbury PD, Hardiman EM, Ahmad M, Otani H, Seghezzi N, Eltis LD, Bugg TD (2013) Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem Biol 8:2151–2156. doi:10.1021/cb400505a

    Article  CAS  PubMed  Google Scholar 

  24. Aslankoohi E, Herrera-Malaver B, Rezaei MN, Steensels J, Courtin CM, Verstrepen KJ (2016) Non-onventional yeast strains increase the aroma complexity of bread. PLoS ONE 11:1–18. doi:10.1371/journal.pone.0165126

    Article  Google Scholar 

  25. Serra S, Fuganti C, Brenna E (2005) Biocatalytic preparation of natural flavours and fragrances. Trends Biotechnol 23:193–198. doi:10.1016/j.tibtech.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  26. Petel C, Onno B, Prost C (2017) Sourdough volatile compounds and their contribution to bread: a review. Trends Food Sci Technol 59:105–123. doi:10.1016/j.tifs.2016.10.015

    Article  CAS  Google Scholar 

  27. Salim-ur-Rehman Paterson A, Piggott JR (2006) Flavour in sourdough breads: a review. Trends Food Sci Technol 17:557–566. doi:10.1016/j.tifs.2006.03.006

    Article  CAS  Google Scholar 

  28. O’Shea N, Kilcawley KN, Gallagher E (2016) Influence of α-amylase and xylanase on the chemical, physical and volatile compound properties of wheat bread supplemented with wholegrain barley flour. Eur Food Res Technol 242:1503–1514. doi:10.1007/s0021

    Article  Google Scholar 

  29. Kulshrestha S, Tyagi P, Sindhi V, Yadavilli KS (2013) Invertase and its applications—a brief review. J Pharm Res 7:792–797. doi:10.1016/j.jopr.2013.07.014

    CAS  Google Scholar 

  30. Takagi H (2017) Construction of baker’s yeast strains with enhanced tolerance to baking-associated stresses. In: Sibirny A (ed) Biotechnology of yeasts and filamentous fungi. Springer, Cham, pp 63–85. doi:10.1007/978-3-319-58829-2_3

  31. Turanlı-Yıldız B, Benbadis L, Alkım C, Sezgin T, Akşit A, Gökçe A, Öztürk Y, Baykal AT, Çakar ZP, François JM (2017) In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization. J Biosci Bioeng 124:309–318. doi:10.1016/j.jbiosc.2017.04.012

    Article  PubMed  Google Scholar 

  32. Takagi H, Shima J (2015) Stress tolerance of baker’s yeast during bread-making processes. In: Takagi H, Kitagaki H (eds) Stress biology of yeasts and fungi. Springer, Tokyo, pp 23–42. doi:10.1007/978-4-431-55248-2_2

  33. Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81:211. doi:10.1007/s00253-008-1698-5

    Article  CAS  PubMed  Google Scholar 

  34. Yoshiyama Y, Tanaka K, Yoshiyama K, Hibi M, Ogawa J, Shima J (2015) Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid. J Biosci Bioeng 119:172–175. doi:10.1016/j.jbiosc.2014.06.021

    Article  CAS  PubMed  Google Scholar 

  35. Tsolmonbaatar A, Hashida K, Sugimoto Y, Watanabe D, Furukawa S, Takagi H (2016) Isolation of baker’s yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses. Int J Food Microbiol 238:233–240. doi:10.1016/j.ijfoodmicro.2016.09.015

    Article  CAS  PubMed  Google Scholar 

  36. Sun X, Zhang CY, Wu MY, Fan ZH, Liu SN, Zhu WB, Xiao DG (2016) MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker’s yeast in lean dough. Microb Cell Fact 15:54. doi:10.1186/s12934-016-0453-3

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sasano Y, Haitani Y, Hashida K, Oshiro S, Shima J, Takagi H (2013) Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker’s yeast. Int J Food Microbiol 165:241–245. doi:10.1016/j.ijfoodmicro.2013.05.015

    Article  CAS  PubMed  Google Scholar 

  38. Berterame NM, Bertagnoli S, Codazzi V, Porro D, Branduardi P (2017) Temperature-induced lipocalin (TIL): a shield against stress-inducing environmental shocks in Saccharomyces cerevisiae. FEMS Yeast Res 17:fox056. doi:10.1093/femsyr/fox056

    Article  Google Scholar 

  39. Lin X, Zhang CY, Bai XW, Song HY, Xiao DG (2014) Effects of MIG1, TUP1 and SSN6 deletion on maltose metabolism and leavening ability of baker’s yeast in lean dough. Microb Cell Fact 13:93. doi:10.1186/s12934-014-0093-4

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lin X, Zhang CY, Bai XW, Xiao DG (2015) Enhanced leavening ability of baker’s yeast by overexpression of SNR84 with PGM2 deletion. J Ind Microbiol Biotechnol 42:939–948. doi:10.1007/s10295-015-1618-5

    Article  CAS  PubMed  Google Scholar 

  41. Ilowefah M, Chinma C, Bakar J, Ghazali HM, Muhammad K, Makeri M (2014) Fermented brown rice flour as functional food ingredient. Foods 3:149–159. doi:10.3390/foods3010149

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pérez-Torrado R, Matallana E (2015) Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism. Biotechnol Prog 31:20–24. doi:10.1002/btpr.1993

    Article  PubMed  Google Scholar 

  43. Watanabe D, Kaneko A, Sugimoto Y, Ohnuki S, Takagi H, Ohya Y (2017) Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions. J Biosci Bioeng 123:183–189. doi:10.1016/j.jbiosc.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  44. Zhang CY, Lin X, Feng B, Liu XE, Bai XW, Xu J, Pi L, Xiao DG (2016) Enhanced leavening properties of baker’s yeast by reducing sucrase activity in sweet dough. Appl Microbiol Biotechnol 100:6375–6383. doi:10.1007/s00253-016-7449-0

    Article  CAS  PubMed  Google Scholar 

  45. Winkler JD, Kao KC (2014) Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104:406–411. doi:10.1016/j.ygeno.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  46. Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412. doi:10.1128/MMBR.00025-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang M, Shukla P, Ayyachamy M, Permaul K, Singh S (2010) Improved bioethanol production through simultaneous saccharification and fermentation of lignocellulosic agricultural wastes by Kluyveromyces marxianus 6556. World J Microbiol Biotechnol 26:1041–1046. doi:10.1007/s11274-009-0267-0

    Article  CAS  Google Scholar 

  48. Cakar ZP, Turanli-Yildiz B, Alkim C, Yilmaz U (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12:171–182. doi:10.1111/j.1567-1364.2011.00775.x

    Article  CAS  PubMed  Google Scholar 

  49. Young E, Lee SM, Alper H (2010) Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol Biofuels 3:24. doi:10.1186/1754-6834-3-24

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pavlopoulos GA, Malliarakis D, Papanikolaou N, Theodosiou T, Enright AJ, Iliopoulos I (2015) Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future. Gigascience 4:38. doi:10.1186/s13742-015-0077-2

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vervoort Y, Linares AG, Roncoroni M, Liu C, Steensels J, Verstrepen KJ (2017) High-throughput system-wide engineering and screening for microbial biotechnology. Curr Opin Biotechnol 46:120–125. doi:10.1016/j.copbio.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  52. Gandhi A, Shah NP (2016) Integrating omics to unravel the stress response mechanisms in probiotic bacteria: approaches, challenges, and prospects. Crit Rev Food Sci Nutr 57:3464–3471. doi:10.1080/10408398.2015.1136805

    Article  Google Scholar 

  53. Ramirez-Gaona M, Marcu A, Pon A, Guo AC, Sajed T, Wishart NA, Karu N, Djoumbou FY, Arndt D, Wishart DS (2017) YMDB 2.0: a significantly expanded version of the yeast metabolome database. Nucleic Acids Res 45:D440–D445. doi:10.1093/nar/gkw1058

    Article  PubMed  Google Scholar 

  54. Ballester-Tomas L, Perez-Torrado R, Rodríguez-Vargas S, Prieto JA, Randez-Gil F (2016) Near-freezing effects on the proteome of industrial yeast strains of Saccharomyces cerevisiae. J Biotechnol 221:70–77. doi:10.1016/j.jbiotec.2016.01.029

    Article  CAS  PubMed  Google Scholar 

  55. Mendes I, Sanchez I, Franco-Duarte R, Camarasa C, Schuller D, Dequin S, Sousa MJ (2017) Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins. BMC Genom 18:455. doi:10.1186/s12864-017-3816-1

    Article  Google Scholar 

  56. Nakashima N, Miyazaki K (2014) Bacterial cellular engineering by genome editing and gene silencing. Int J Mol Sci 15:2773–2793. doi:10.3390/ijms15022773

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pereira R, Nielsen J, Rocha I (2016) Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae. Metab Eng Commun 3:153–163. doi:10.1016/j.meteno.2016.05.002

    Article  Google Scholar 

  58. Kim SR, Park YC, Jin YS, Seo JH (2013) Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 31:851–861. doi:10.1016/j.biotechadv.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  59. McIlwain SJ, Peris D, Sardi M, Moskvin OV, Zhan F, Myers KS, Riley NM, Buzzell A, Parreiras LS, Ong IM, Landick R (2016) Genome sequence and analysis of a stress-tolerant, wild-derived strain of Saccharomyces cerevisiae used in biofuels research. G3 Genes Genomes Genet 6:1757–1766. doi:10.1534/g3.116.029389

    Google Scholar 

  60. Papapetridis I, Dijk M, Maris AJA, Pronk JT (2017) Metabolic engineering strategies for optimizing acetate reduction, ethanol yield and osmotolerance in Saccharomyces cerevisiae. Biotechnol Biofuels 10:107. doi:10.1186/s13068-017-0791-3

    Article  PubMed  PubMed Central  Google Scholar 

  61. Krivoruchko A, Nielsen J (2015) Production of natural products through metabolic engineering of Saccharomyces cerevisiae. Curr Opin Biotechnol 35:7–15. doi:10.1016/j.copbio.2014.12.004

    Article  CAS  PubMed  Google Scholar 

  62. Miskovic L, Alff-Tuomala S, Soh KC, Barth D, Salusjärvi L, Pitkänen JP, Ruohonen L, Penttilä M, Hatzimanikatis V (2017) A design–build–test cycle using modeling and experiments reveals interdependencies between upper glycolysis and xylose uptake in recombinant Saccharomyces cerevisiae and improves predictive capabilities of large-scale kinetic models. Biotechnol Biofuels 10:166. doi:10.1186/s13068-017-0838-5

    Article  PubMed  PubMed Central  Google Scholar 

  63. Generoso WC, Schadeweg V, Oreb M, Boles E (2015) Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin Biotechnol 33:1–7. doi:10.1016/j.copbio.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  64. Jakociunas T, Bonde I, Herrgård M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling JD (2015) Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab Eng 28:213–222. doi:10.1016/j.ymben.2015.01.008

    Article  CAS  PubMed  Google Scholar 

  65. Ledford H (2015) CRISPR, the disruptor. Nature 522:20–24. doi:10.1038/522020a

    Article  CAS  PubMed  Google Scholar 

  66. Gottardi M, Knudsen JD, Prado L, Oreb M, Branduardi P, Boles E (2017) De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 101:4883–4893. doi:10.1007/s00253-017-8220-x

    Article  CAS  PubMed  Google Scholar 

  67. Zha M, Yin S, Sun B, Wang X, Wang C (2017) STR3 and CYS3 contribute to 2-furfurylthiol biosynthesis in Chinese sesame-flavored baijiu yeast. J Agric Food Chem 65:5503–5511. doi:10.1021/acs.jafc.7b01359

    Article  CAS  PubMed  Google Scholar 

  68. Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K (2011) Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels 4:21. doi:10.1186/1754-6834-4-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nakagawa Y, Ogihara H, Mochizuki C, Yamamura H, Iimura Y, Hayakawa M (2017) Development of intra-strain self-cloning procedure for breeding baker’s yeast strains. J Biosci Bioeng 123:319–326. doi:10.1016/j.jbiosc.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  70. Dong J, Chen D, Wang G, Zhang C, Du L, Liu S, Zhao Y, Xiao D (2016) Improving freeze-tolerance of baker’s yeast through seamless gene deletion of NTH1. J Ind Microbiol Biotechnol 43:817–828. doi:10.1007/s10295-016-1753-7

    Article  CAS  PubMed  Google Scholar 

  71. Ballester-Tomás L, Randez-Gil F, Pérez-Torrado R, Prieto JA (2015) Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae. Microb Cell Fact 14:100. doi:10.1186/s12934-015-0289-2

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dong J, Wang G, Zhang C, Tan H, Sun X, Wu M, Xiao D (2013) A two-step integration method for seamless gene deletion in baker’s yeast. Anal Biochem 439:30–36. doi:10.1016/j.ab.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  73. Ando A, Nakamura T (2016) Prevention of GABA reduction during dough fermentation using a baker’s yeast dal81 mutant. J Biosci Bioeng 122:441–445. doi:10.1016/j.jbiosc.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  74. Zhang CY, Lin X, Song HY, Xiao DG (2015) Effects of MAL61 and MAL62 overexpression on maltose fermentation of baker’s yeast in lean dough. World J Microbiol Biotechnol 31:1241–1249. doi:10.1007/s11274-015-1874-6

    Article  CAS  PubMed  Google Scholar 

  75. Zhang CY, Bai XW, Lin X, Liu XE, Xiao DG (2015) Effects of SNF1 on maltose metabolism and leavening ability of baker’s yeast in lean dough. J Food Sci 80:M2879–M2885. doi:10.1111/1750-3841.13137

    Article  CAS  PubMed  Google Scholar 

  76. Jun H, Jiayi C (2012) Metabolic engineering of Saccharomyces cerevisiae for increased bioconversion of lignocellulose to ethanol. Ind J Microbiol 52:442–448. doi:10.1007/s12088-012-0259-x

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges Maharshi Dayanand University, Rohtak for providing infrastructure and lab facility for compilation of this interesting and informative review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyoosh Shukla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dangi, A.K., Dubey, K.K. & Shukla, P. Strategies to Improve Saccharomyces cerevisiae: Technological Advancements and Evolutionary Engineering. Indian J Microbiol 57, 378–386 (2017). https://doi.org/10.1007/s12088-017-0679-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0679-8

Keywords

Navigation