Skip to main content
Log in

Enhanced leavening ability of baker’s yeast by overexpression of SNR84 with PGM2 deletion

  • Genetics and Molecular Biology of Industrial Organisms
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Dough-leavening ability is one of the main aspects considered when selecting a baker’s yeast strain for baking industry. Generally, modification of maltose metabolic pathway and known regulatory networks of maltose metabolism were used to increase maltose metabolism to improve leavening ability in lean dough. In this study, we focus on the effects of PGM2 (encoding for the phosphoglucomutase) and SNR84 (encoding for the H/ACA snoRNA) that are not directly related to both the maltose metabolic pathway and known regulatory networks of maltose metabolism on the leavening ability of baker’s yeast in lean dough. The results show that the modifications on PGM2 and/or SNR84 are effective ways in improving leavening ability of baker’s yeast in lean dough. Deletion of PGM2 decreased cellular glucose-1-phosphate and overexpression of SNR84 increased the maltose permease activity. These changes resulted in 11, 19 and 21 % increases of the leavening ability for PGM2 deletion, SNR84 overexpression and SNR84 overexpression combining deleted PGM2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alves-Araújo C, Pacheco A, Almeida MJ, Spencer-Martins I, Leão C, Sousa MJ (2007) Sugar utilization patterns and respiro-fermentative metabolism in the baker’s yeast Torulaspora delbrueckii. Microbiology 153:898–904

    Article  PubMed  Google Scholar 

  2. Angelov AI, Karadjov GI, Roshkova ZG (1996) Strains selection of baker’s yeast with improved technological properties. Food Res Int 29:235–239

    Article  CAS  Google Scholar 

  3. Bell PJ, Higgins VJ, Attfield PV (2001) Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media. Lett Appl Microbiol 32:224–229

    Article  CAS  PubMed  Google Scholar 

  4. Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J (2005) Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol 71:6465–6472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Brown JW, Clark GP, Leader DJ, Simpson CG, Lowe T (2001) Multiple snoRNA gene clusters from Arabidopsis. RNA 7:1817–1832

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Campelo AF, Belo I (2004) Fermentative capacity of baker’s yeast exposed to hyperbaric stress. Biotechnol Lett 26:1237–1240

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Liu Q, Chen X, Wu J, Xie J, Guo T, Zhu C, Ying H (2014) Control of glycolytic flux in directed biosynthesis of uridine-phosphoryl compounds through the manipulation of ATP availability. Appl Microbiol Biotechnol 98:6621–6632

    Article  CAS  PubMed  Google Scholar 

  8. Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2010) PGM2 overexpression improves anaerobic galactose fermentation in Saccharomyces cerevisiae. Microb Cell Fact 9:40

    Article  PubMed Central  PubMed  Google Scholar 

  9. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    Article  CAS  PubMed  Google Scholar 

  10. Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:e23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Hauf J, Zimmermann FK, Müller S (2000) Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microb Technol 26:688–698

    Article  CAS  PubMed  Google Scholar 

  12. Higgins VJ, Braidwood M, Bell P, Bissinger P, Dawes IW, Attfield PV (1999) Genetic evidence that high noninduced maltase and maltose permease activities, governed by MALx3-encoded transcriptional regulators, determine efficiency of gas production by baker’s yeast in unsugared dough. Appl Environ Microbiol 65:680–685

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Hirasawa R, Yokoigawa K (2001) Leavening ability of baker’s yeast exposed to hyperosmotic media. FEMS Microbiol Lett 194:159–162

    Article  CAS  PubMed  Google Scholar 

  14. Houghton-Larsen J, Brandt A (2006) Fermentation of high concentrations of maltose by Saccharomyces cerevisiae is limited by the COMPASS methylation complex. Appl Environ Microbiol 72:7176–7182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Howard SC, Deminoff SJ, Herman PK (2006) Increased phosphoglucomutase activity suppresses the galactose growth defect associated with elevated levels of Ras signaling in S. cerevisiae. Curr Genet 49:1–6

    Article  CAS  PubMed  Google Scholar 

  16. Hu Z, Nehlin JO, Ronne H, Michels CA (1995) MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae. Curr Genet 28:258–266

    Article  CAS  PubMed  Google Scholar 

  17. Jiang TX, Xiao DG, Gao Q (2008) Characterisation of maltose metabolism in lean dough by lagging and non-lagging baker’s yeast strains. Ann Microbiol 58:655–660

    Article  CAS  Google Scholar 

  18. Kiss T (2002) Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109:145–148

    Article  CAS  PubMed  Google Scholar 

  19. Klein CJL, Olsson L, Rønnow B, Mikkelsen JD, Nielsen J (1996) Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae. Appl Environ Microbiol 62:4441–4449

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Klein CJL, Olsson L, Ronnow B, Mikkelsen JD, Nielsen J (1997) Glucose and Maltose Metabolism in MIG1-disrupted and MAL-constitutive Strains of Saccharomyces cerevisiae. Food Technol Biotechnol 35:287–292

    CAS  Google Scholar 

  21. Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS (2011) Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol Bioeng 108:621–631

    Article  CAS  PubMed  Google Scholar 

  22. Lian J, Si T, Nair NU, Zhao H (2014) Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng 24:139–149

    Article  CAS  PubMed  Google Scholar 

  23. Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66:744–753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lin X, Zhang CY, Bai XW, Song HY, Xiao DG (2014) Effects of MIG1, TUP1 and SSN6 deletion on maltose metabolism and leavening ability of baker’s yeast in lean dough. Microb Cell Fact 13:93

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lu J, Dong J, Wu D, Chen Y, Guo X, Shi Y, Sun X, Xiao D (2012) Construction of recombinant industrial brewer’s yeast with lower diacetyl production and proteinase A activity. Eur Food Res Technol 235:951–961

    Article  CAS  Google Scholar 

  26. Ni J, Tien AL, Fournier MJ (1997) Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89:565–573

    Article  CAS  PubMed  Google Scholar 

  27. Oda Y, Ouchi K (1990) Effect of chromosome loss on the leavening ability of Saccharomyces cerevisiae in dough. Curr Genet 18:401–403

    Article  Google Scholar 

  28. Oh D, Hopper JE (1990) Transcription of a yeast phosphoglucomutase isozyme gene is galactose inducible and glucose repressible. Mol Cell Biol 10:1415–1422

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Randez-Gil F, Córcoles-Sáez I, Prieto JA (2013) Genetic and phenotypic characteristics of baker’s yeast: relevance to baking. Annu Rev Food Sci Technol 4:191–214

    Article  CAS  PubMed  Google Scholar 

  30. Randez-Gil F, Sanz P, Prieto JA (1999) Engineering baker’s yeast: room for improvement. Trends Biotechnol 17:237–244

    Article  CAS  PubMed  Google Scholar 

  31. Salema-Oom M, De Sousa HR, Assunçao M, Gonçalves P, Spencer-Martins I (2011) Derepression of a baker’s yeast strain for maltose utilization is associated with severe deregulation of HXT gene expression. J Appl Microbiol 110:364–374

    Article  CAS  PubMed  Google Scholar 

  32. Sasano Y, Haitani Y, Hashida K, Oshiro S, Shima J, Takagi H (2013) Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker’s yeast. Int J Food Microbiol 165:241–245

    Article  CAS  PubMed  Google Scholar 

  33. Schattner P, Decatur WA, Davis CA, Ares M Jr, Fournier MJ, Lowe TM (2004) Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome. Nucleic Acids Res 32:4281–4296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Schüller HJ (2003) Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43:139–160

    PubMed  Google Scholar 

  35. Sun X, Zhang C, Dong J, Wu M, Zhang Y, Xiao D (2012) Enhanced leavening properties of baker’s yeast overexpressing MAL62 with deletion of MIG1 in lean dough. J Ind Microbiol Biotechnol 39:1533–1539

    Article  PubMed  Google Scholar 

  36. Tycowski KT, Steitz JA (2001) Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs. Eur J Cell Biol 80:119–125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The current study was financially supported by the National Natural Science Foundation of China (31171730), the National High Technology Research and Development Program of China (2013AA102106), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1166).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cui-Ying Zhang or Dong-Guang Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Zhang, CY., Bai, XW. et al. Enhanced leavening ability of baker’s yeast by overexpression of SNR84 with PGM2 deletion. J Ind Microbiol Biotechnol 42, 939–948 (2015). https://doi.org/10.1007/s10295-015-1618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1618-5

Keywords

Navigation