Skip to main content
Log in

Analysis of patterns in an additional food-provided predator–prey reaction diffusion model using amplitude equations

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A two-species predator–prey reaction diffusion model where additional food was provided to the predator has been considered in the presence of both self- and cross-diffusion terms in a two-dimensional space. Importance of self- and cross-diffusion terms are discussed ecologically. Linear stability analysis has been done to determine the Turing instability region of the parameter space. Impacts of the cross-diffusion term on the stability behaviour are discussed. Using weak nonlinear analysis, the amplitude equations has been formulated to predict the stability of hexagonal, stripes and their mixture patterns near the Turing thresholds analytically. Finite difference method has been used for numerical simulations of the model under no-flux boundary conditions. Numerical simulation results are in good agreement with the theoretical predictions of patterns near the Turing threshold using amplitude equations. Additional food can play a significant role in pattern forming instabilities because near the Turing thresholds small fluctuation of additional food parameter can produce a wide variety of Turing patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S N Chowdhury, J Banerjee, M Perc and D Ghosh, J. Theor. Biol. 564, 111446 (2023)

    Article  Google Scholar 

  2. S N Chowdhury, S Kundu, J Banerjee, M Perc and D Ghosh, J. Theor. Biol. 518, 110606 (2021)

    Article  Google Scholar 

  3. S N Chowdhury, S Kundu, M Perc and D Ghosh, Proc. R. Soc. A 477(2252), 20210397 (2021)

    Article  ADS  Google Scholar 

  4. M C Cross and P C Hohenberg, Rev. Mod. Phys. 65(3), 851 (1993)

    Article  ADS  Google Scholar 

  5. Y Xu, W Jin and J Ma, Int. J. Mod. Phys. B 29(23), 1550164 (2015)

    Article  ADS  Google Scholar 

  6. W Wang, L Zhang, H Wang and Z Li, Ecol. Model. 221(2), 130 (2010)

    Article  Google Scholar 

  7. H Teimouri and A B Kolomeisky, J. Phys. A: Math. Theor. 49(48), 483001 (2016)

    Article  Google Scholar 

  8. G Q Sun, Z Jin, L Li, M Haque and B L Li, Nonlinear Dyn. 69(4), 1631 (2012)

    Article  Google Scholar 

  9. W Wang, Y Lin, L Zhang, F Rao and Y Tan, Commun. Nonlinear Sci. Numer. Simul. 16(4), 2006 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. J Chattopadhyay and P K Tapaswi, Acta Appl. Math. 48(1), 1 (1997)

    Article  MathSciNet  Google Scholar 

  11. J D Murray, Mathematical biology II: Spatial models and biomedical applications (Springer, New York, 2001) Vol. 3

  12. E H Kerner, Bull. Math. Biophys. 21(2), 217 (1959)

    Article  MathSciNet  Google Scholar 

  13. N Shigesada, K Kawasaki and E Teramoto, J. Theor. Biol. 79(1), 83 (1979)

    Article  ADS  Google Scholar 

  14. L N Guin, Math. Comput. Simul. 109, 174 (2015)

    Article  Google Scholar 

  15. S Kumari, S K Tiwari and R K Upadhyay, Math. Comput. Simul. 202, 246 (2022)

  16. S Ghorai and S Poria, Chaos Solitons Fractals 85, 57 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. C Li, Chaos Solitons Fractals 99, 226 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. X Tang and Y Song, Nonlinear Anal. Real World Appl. 24, 36 (2015)

    Article  MathSciNet  Google Scholar 

  19. G Q Sun, Z Jin, Q X Liu and L Li, Chin. Phys. B 17(11), 3936 (2008)

    Article  ADS  Google Scholar 

  20. X Tang, Y Song and T Zhang, Nonlinear Dyn. 86(1), 73 (2016)

    Article  Google Scholar 

  21. S Ghorai and S Poria, Nonlinear Dyn. 87(4), 2715 (2017)

    Article  Google Scholar 

  22. Y Nec and A A Nepomnyashchy, J. Phys. A: Math. Theor. 40(49), 14687 (2007)

    Article  ADS  Google Scholar 

  23. Y Nec and A A Nepomnyashchy, J. Phys. A: Math. Theor. 41(38), 385101 (2008)

    Article  ADS  Google Scholar 

  24. M W Sabelis, P C J Van Rijn, IOBC WPRS Bulletin 29(4), 195 (2006)

    Google Scholar 

  25. P D N Srinivasu and B S R V Prasad, J. Math. Biol. 60(4), 591 (2010)

    Article  MathSciNet  Google Scholar 

  26. K P Das, N Bairagi and P Sen, Int. J. Bifurc. Chaos 26(09), 1650147 (2016)

    Article  Google Scholar 

  27. A Gupta, A Kumar and B Dubey, Int. J. Biomath. 15(08), 22550060 (2022)

    Google Scholar 

  28. S Chakraborty, P K Tiwari, S K Sasmal, S Biswas, S Bhattacharya and J Chattopadhyay, Appl. Math. Model. 47, 128 (2017)

    Article  MathSciNet  Google Scholar 

  29. S Ghorai and S Poria, Chaos Solitons Fractals 103, 68 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. S Ciliberto, P Coullet, J Lega, E Pampaloni and C Perez-Garcia, Phys. Rev. Lett. 65(19), 2370 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  31. W Wang, Y. Lin, F Rao, L Zhang and Y Tan, J. Stat. Mech.: Theory Exp. 2010(11), P11036 (2010)

    Article  Google Scholar 

  32. J Ma, Y Xu, G Ren and C Wang, Nonlinear Dyn. 84(2), 497 (2016)

    Article  Google Scholar 

  33. V Vitagliano, Pure Appl. Chem. 63(10), 1441 (1991)

    Article  Google Scholar 

  34. S Yuan, C Xu and T Zhang, Chaos 23(3), 033102 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  35. B Pena and C Perez-Garcia, Europhys. Lett. 51(3), 300 (2000)

    Article  ADS  Google Scholar 

  36. B Pena and C Perez-Garcia, Phys. Rev. E 64(5), 056213 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  37. S N Chowdhury and D Ghosh, Eur. Phys. J. Spec. Top. 229(6–7), 1299 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Editor in Chief and anonymous reviewers for their valuable comments and suggestions. The authors are thankful to the Editor in chief and anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup Poria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorai, S., Umut, O. & Poria, S. Analysis of patterns in an additional food-provided predator–prey reaction diffusion model using amplitude equations. Pramana - J Phys 97, 200 (2023). https://doi.org/10.1007/s12043-023-02679-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02679-x

Keywords

PACS Nos

Navigation