Skip to main content
Log in

Prediction for breakup of spiral wave in a regular neuronal network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Target wave and spiral wave can regulate the collective behaviors of electrical activities in neuronal systems as a powerful ‘pacemaker’. Disordered states occur when normal signal propagation among neurons is disturbed and neuronal disease could be induced. In this paper, a stable rotating spiral wave is developed as initial state that the two-dimensional neuronal network of Hindmarsh–Rose neuron shows distinct periodicity and regularity in space, and then, some parameters are changed sharply to model the destruction effect induced by external large forcing or internal collapse, and the destructed areas will be expanded to occupy a larger area by expanding the damaged boundary in random way. The collapse and instability of spiral wave, ordered states could be predicated by monitoring and analyzing the time series of some nodes. It could be useful to detect the emergence of disaster in some biological or ecological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Kalyuzhny, M., Kadmon, R., Shnerb, N.M.: A neutral theory with environmental stochasticity explains static and dynamic properties of ecological communities. Ecol. Lett. 18, 572–580 (2015)

    Article  Google Scholar 

  2. Layeghifard, M., Makarenkov, V., Peres-Neto, P.R.: Spatial and species compositional networks for inferring connectivity patterns in ecological communities. Glob. Ecol. Biologeogr. 24, 718–727 (2015)

    Article  Google Scholar 

  3. Jeppesen, E., Brucet, S., Naselli-Flores, L., et al.: Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750, 201–227 (2015)

    Article  Google Scholar 

  4. Upadhyay, R.K., Roy, P., Datta, J.: Complex dynamics of ecological systems under nonlinear harvesting: Hopf bifurcation and Turing instability. Nonlinear Dyn. 79, 2251–2270 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhang, T.H., Xing, Y.P., Zang, H., et al.: Spatio-temporal dynamics of a reaction–diffusion system for a predator–prey model with hyperbolic mortality. Nonlinear Dyn. 78, 265–277 (2014)

    Article  MathSciNet  Google Scholar 

  6. Wang, T.: Pattern dynamics of an epidemic model with nonlinear incidence rate. Nonlinear Dyn. 77, 31–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rao, F.: Spatiotemporal complexity of a three-species ratio-dependent food chain model. Nonlinear Dyn. 76, 1661–1676 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhao, H.Y., Huang, X.X., Zhang, X.B.: Turing instability and pattern formation of neural networks with reaction–diffusion terms. Nonlinear Dyn. 76, 115–124 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sun, G.Q., Li, L., Zhang, Z.K.: Spatial dynamics of a vegetation model in an arid flat environment. Nonlinear Dyn. 73, 2207–2219 (2013)

    Article  MathSciNet  Google Scholar 

  10. Ma, J., Hu, B.L., Wang, C.N., et al.: Simulating the formation of spiral wave in the neuronal system. Nonlinear Dyn. 73, 73–83 (2013)

    Article  MathSciNet  Google Scholar 

  11. Sun, G.Q.: Pattern formation of an epidemic model with diffusion. Nonlinear Dyn. 69, 1097–1104 (2012)

    Article  MathSciNet  Google Scholar 

  12. Liu, P.T., Xue, Y.: Spatiotemporal dynamics of a predator–prey model. Nonlinear Dyn. 69, 71–77 (2012)

    Article  MathSciNet  Google Scholar 

  13. Cherry, E.M., Fenton, F.H.: Contribution of the Purkinje network to wave propagation in the canine ventricle: insights from a combined electrophysiological–anatomical model. Nonlinear Dyn. 68, 365–SI 379 (2012)

    Article  Google Scholar 

  14. Sanguinetti, M.C., Tristani-Firouzi, M.: hERG potassium channels and cardiac arrhythmia. Nature 440, 463–469 (2006)

    Article  Google Scholar 

  15. Wolf, M.M., Varigos, G.A., Hunt, D., Sloman, J.G.: Sinus arrhythmia in acute myocardial infarction. Med. J. Aust. 2(2), 52–53 (1978)

    Google Scholar 

  16. Chen, Q.Y., Kirsch, G.E., Zhang, D.M., et al.: Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296 (1998)

    Article  Google Scholar 

  17. Witkowski, F.X., Leon, L.J., Penkoske, P.A., et al.: Spatiotemporal evolution of ventricular fibrillation. Nature 392, 78–82 (1998)

    Article  Google Scholar 

  18. Garfinkel, A., Kim, Y.H., Voroshilovsky, O., et al.: Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. USA 97, 6061–6066 (2000)

    Article  Google Scholar 

  19. Huang, X.Y., Xu, W.F., Liang, J.M., et al.: Spiral wave dynamics in neocortex. Neuron 68, 978–990 (2010)

    Article  Google Scholar 

  20. Schiff, S.J., Huang, X.Y., Wu, J.Y.: Dynamical evolution of spatiotemporal patterns in mammalian middle cortex. Phys. Rev. Lett. 98, 178102 (2007)

    Article  Google Scholar 

  21. Ma, J., Huang, L., Ying, H.P., et al.: Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin–Huxley neuronal networks. Commun. Nonlinear Sci. Numer. Simulat. 17, 4281–4293 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, J., Huang, L., Ying, H.P., et al.: Detecting the breakup of spiral wave in small-world networks of neurons due to channel block. Chin. Sci. Bull. 57, 2094–2101 (2012)

    Article  Google Scholar 

  23. Sinha, S., Saramaki, J., Kaski, K.: Emergence of self-sustained patterns in small-world excitable media. Phys. Rev. E 76, 015101 (2007)

    Article  Google Scholar 

  24. Perc, M.: Effects of small-world connectivity on noise induced temporal and spatial order in neural media. Chaos Solitons Fractals 31, 280–291 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, Y., Li, J.J., Liu, S.B., et al.: Noise-induced spatiotemporal patterns in Hodgkin–Huxley neuronal network. Cogn. Neurodyn. 7, 431–440 (2013)

    Article  MathSciNet  Google Scholar 

  26. Guo, D.Q., Wang, Q.Y., Perc, M.: Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys. Rev. E 85, 061905 (2012)

    Article  Google Scholar 

  27. Volman, V., Perc, M., Bazhenov, M.: Gap junctions and epileptic seizures-two sides of the same coin. PLoS ONE 6, e20572 (2011)

    Article  Google Scholar 

  28. Song, X.L., Wang, C.N., Ma, J., Tang, J.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Tech. Sci. 58, 1007–1014 (2015)

    Article  Google Scholar 

  29. Bekkers, J.M.: Synaptic transmission: a new kind of inhibition. Curr. Biol. 12, R648–R650 (2002)

    Article  Google Scholar 

  30. Qin, H.X., Ma, J., Jin, W.Y., et al.: Dynamics of electric activities in neuron and neurons of network induced by autapse. Sci. China Tech. Sci. 57, 936–946 (2014)

    Article  Google Scholar 

  31. Qin, H.X., Wu, Y., Wang, C.N., et al.: Emitting waves from defects in network with autapses. Commun. Nonlinear Sci. Numer. Simulat. 23, 164–174 (2015)

    Article  MathSciNet  Google Scholar 

  32. Huang, L., Ma, J., Tang, J., et al.: Transition of ordered waves in neuronal network by diffusive poisoning of ion channels. J. Biol. Syst. 21, 1350002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, X.Y., Ma, J., Li, F., et al.: Development of spiral wave in a regular network of excitatory neurons due to stochastic poisoning of ion channels. Commun. Nonlinear Sci. Numer. Simulat. 18, 3350–3364 (2013)

    Article  MathSciNet  Google Scholar 

  34. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first-order differential equations. Proc. R. Soc. Lond. B 221(1222), 87–102 (1984)

    Article  Google Scholar 

  35. Wang, C.N., Ma, J., Tang, J., et al.: Instability and death of spiral wave in a two-dimensional array of Hindmarsh–Rose neurons. Commun. Theor. Phys. 53, 382–388 (2010)

    Article  Google Scholar 

  36. Erichsen Jr, R., Brunnet, L.G.: Multistability in networks of Hindmarsh–Rose neurons. Phys. Rev. E 78, 061917 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This project is partially supported by the National Natural Science of Foundation of China under Grant No. 11265008, 11365014 and also supported by the Gansu National Science of Foundation under Grant No. 1506RJZA095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Xu, Y., Ren, G. et al. Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dyn 84, 497–509 (2016). https://doi.org/10.1007/s11071-015-2502-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2502-6

Keywords

Navigation