Skip to main content
Log in

Highly Efficient, 5′-Sequence-Specific Transgene Silencing in a Complex Polyploid

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Sugarcane, a complex polyploid, shows highly efficient and rapidly imposed silencing of diverse transgene constructs. Silencing is 5′-sequence-specific, copy-number independent, developmentally regulated and post-transcriptional in the plants first regenerated from transgenic callus. The results challenge some early generalizations from studies in model dicotyledonous plants, about causes of transgene silencing and approaches to avoid the problem. We reason that patchy and progressive transgene silencing, seen in most other plant species, may be associated with increasing endopolyploidy during maturation of differentiated tissues. The experimentally tractable sugarcane system allows features likely to trigger or protect from silencing to be tested, and ultimately controlled to improve the efficiency of plant improvement by genetic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

cDNA:

complementary DNA

DNA:

deoxyribonucleic acid

dsRNA:

double-stranded RNA

GUS:

glucuronidase (encoded by the uidA gene)

HDGS:

homology-dependent gene silencing

LUC:

luciferase (encoded by the luc gene)

NPTII:

neomycin phosphotransferase (encoded by the aphA gene)

PTGS:

post-transcriptional gene silencing

RNA:

ribonucleic acid

RNAi:

RNA interference (RNA-mediated gene silencing)

siRNA:

small interfering RNA (intermediate in RNAi)

TGS:

transcriptional gene silencing

Ubi:

ubiquitin

References

  • Baulcombe DC, English JJ (1996) Ectopic pairing of homologous DNA and post-transcriptional gene silencing in transgenic plants. Curr Opin Biotechnol 7:173–180

    Article  CAS  Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  PubMed  Google Scholar 

  • Birch RG, Bower R, Elliott AR, Potier BAM, Franks T, Cordeiro G (1996) Expression of foreign genes in sugarcane. In: Cock JH, Brekelbaum T (eds) Proc Int Soc Sugarcane Technol XXII Congress. Tecnicana, Cali, pp 368–373

    Google Scholar 

  • Bird AP (1995) Gene number, noise reduction and biological complexity. Trends Genet 11:94–100

    Article  CAS  PubMed  Google Scholar 

  • Bower R, Elliott AR, Potier BAM, Birch RG (1996) High-efficiency, microprojectile-mediated cotransformation of sugarcane, using visible or selectable markers. Mol Breed 2:239–249

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  CAS  PubMed  Google Scholar 

  • Cesarone CF, Bolognesi C, Santi L (1979) Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Anal Biochem 100:188–197

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain DA, Brettel RIS, Last DI, Witrzens B, McElroy D, Dolferus R, Dennis ES (1994) The use of the Emu promoter with antibiotic and herbicide resistance genes for the selection of transgenic wheat callus and rice plants. Aust J Plant Physiol 21:95–112

    Article  CAS  Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896

    Article  CAS  PubMed  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  CAS  PubMed  Google Scholar 

  • Cox KH, Goldberg RB (1988) Analysis of plant gene expression. In: Shaw CH (ed) Plant molecular biology: A practical approach. IRL Press, Oxford, pp 1–35

    Google Scholar 

  • Dehio C, Schell J (1994) Identification of plant genetic loci involved in a posttranscriptional mechanism for meiotically reversible transgene silencing. Proc Natl Acad Sci USA 91:5538–5542

    Article  CAS  PubMed  Google Scholar 

  • Eamens A, Wang MB, Smith NA, Waterhouse PM (2008) RNA silencing in plants: Yesterday, today, and tomorrow. Plant Physiol 147:456–468

    Article  CAS  PubMed  Google Scholar 

  • Finnegan J, McElroy D (1994) Transgene inactivation: Plants fight back! Biotechnology 12:883–888

    Article  Google Scholar 

  • Fojtova M, Van Houdt H, Depicker A, Kovarik A (2003) Epigenetic switch from posttranscriptional to transcriptional silencing is correlated with promoter hypermethylation. Plant Physiol 133:1240–1250

    Article  CAS  PubMed  Google Scholar 

  • Galitski T, Saldanha AJ, Styles CA, Lander ES, Fink GR (1999) Ploidy regulation of gene expression. Science 285:251–254

    Article  CAS  PubMed  Google Scholar 

  • Gallo-Meagher M, Irvine JE (1993) Effects of tissue type and promoter strength on transient GUS expression in sugarcane following particle bombardment. Plant Cell Rep 12:666–670

    Article  CAS  Google Scholar 

  • Graham MW, Mudge SR, Sternes PR, Birch RG (2009) Understanding and avoiding transgene silencing. In: Stewart CN, Touraev A, Citovsky V, Tzfira T (eds) Plant Transformation Technologies. Wiley-Blackwell, New York

    Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmannaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): Genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000

    CAS  PubMed  Google Scholar 

  • Guo M, Davis D, Birchler JA (1996) Dosage effects on gene expression in a maize ploidy series. Genetics 142:1349–1355

    CAS  PubMed  Google Scholar 

  • Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen XM, Wang XJ, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA 106:17835–17840

    Article  CAS  PubMed  Google Scholar 

  • Hansom S, Bower R, Zhang L, Potier B, Elliott A, Basnayake S, Cordeiro G, Hogarth DM, Cox M, Berding N, Birch RG (1999) Regulation of transgene expression in sugarcane. In: Singh V (ed) Proceedings of the international society of sugarcane technologists XXIII congress. STAI, New Delhi, pp 278–290

    Google Scholar 

  • Hobbs SLA, Kpodar P, DeLong CMO (1990) The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15:851–864

    Article  CAS  PubMed  Google Scholar 

  • Ingelbrecht IL, Irvine JE, Mirkov TE (1999) Posttranscriptional gene silencing in transgenic sugarcane. Dissection of homology-dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiol 119:1187–1197

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen RA (1995) Cosuppression, flower color patterns, and metastable gene expression states. Science 268:686–691

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa A, O’Dell M, Hellens RP (2007) Epigenetic inactivation of chalcone synthase-A transgene transcription in petunia leads to a reversion of the post-transcriptional gene silencing phenotype. Plant Cell Physiol 48:638–647

    Article  CAS  PubMed  Google Scholar 

  • Kovarik A, Van Houdt H, Holy A, Depicker A (2000) Drug-induced hypomethylation of a posttranscriptionally silenced transgene locus of tobacco leads to partial release of silencing. FEBS Lett 467:47–51

    Article  CAS  PubMed  Google Scholar 

  • Koziel MG, Carozzi NB, Desai N (1996) Optimizing expression of transgenes with an emphasis on post-transcriptional events. Plant Mol Biol 32:393–405

    Article  CAS  PubMed  Google Scholar 

  • Krizova K, Fojtova M, Depicker A, Kovarik A (2009) Cell culture-induced gradual and frequent epigenetic reprogramming of invertedly repeated tobacco transgene epialleles. Plant Physiol 149:1493–1504

    Article  CAS  PubMed  Google Scholar 

  • Kumpatla SP, Hall TC (1998) Recurrent onset of epigenetic silencing in rice harboring a multi-copy transgene. Plant J 14:129–135

    Article  CAS  PubMed  Google Scholar 

  • Kumpalta SP, Chandrasekharan MB, Iyer LM, Li G, Hall TC (1998) Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci 3:97–104

    Article  Google Scholar 

  • Kunz C, Schob H, Stam M, Kooter JM, Meins F (1996) Developmentally regulated silencing and reactivation of tobacco chitinase transgene expression. Plant J 10:437–450

    Article  CAS  Google Scholar 

  • Kyozuka J, McElroy D, Hayakawa T, Xie Y, Wu R, Shimamoto K (1993) Light-regulated and cell-specific expression of tomato rbcs-gusA and rice rbcs-gusA fusion genes in transgenic rice. Plant Physiol 102:991–1000

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Aitken KS, Grof CLP, Bonnett GD, Smith GR (2005) Sugarcane biotechnology: The challenges and opportunities. In Vitro Cell Dev Biol Plant 41:345–363

    Article  CAS  Google Scholar 

  • Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Article  Google Scholar 

  • Marjanac G, Karimi M, Naudts M, Beeckman T, Depicker A, De Buck S (2009) Gene silencing induced by hairpin or inverted repeated sense transgenes varies among promoters and cell types. New Phytol 184:851–864

    Article  CAS  PubMed  Google Scholar 

  • Matzke AJM, Matzke MA (1998a) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148

    Article  CAS  PubMed  Google Scholar 

  • Matzke M, Kanno T, Claxinger L, Huettel B, Matzke AJM (2009) RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21:367–376

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107:679–685

    CAS  PubMed  Google Scholar 

  • Matzke MA, Matzke AJM (1998b) Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses. Cell Mol Life Sci 54:94–103

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Matzke AJM (1998c) Gene silencing in plants: Relevance for genome evolution and the acquisition of genomic methylation patterns. Ciba Foundation Symposia 214:168–186

    CAS  Google Scholar 

  • McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Mol Gen Genet 231:150–160

    Article  CAS  PubMed  Google Scholar 

  • Millar AJ, Short SR, Chua N-H, Kay SA (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4:1075–1087

    Article  CAS  PubMed  Google Scholar 

  • Mourrain P, van Blokland R, Kooter JM, Vaucheret H (2007) A single transgene locus triggers both transcriptional and post-transcriptional silencing through double-stranded RNA production. Planta 225:365–379

    Article  CAS  PubMed  Google Scholar 

  • Mudge SR, Lewis-Henderson W, Birch RG (1996) Comparison of Vibrio and firefly luciferases as reporter gene systems for use in bacteria and plants. Aust J Plant Physiol 23:75–83

    Article  CAS  Google Scholar 

  • Mudge SR, Osabe K, Casu RE, Bonnett GD, Manners JM, Birch RG (2009) Efficient silencing of reporter transgenes coupled to known functional promoters in sugarcane, a highly polyploid crop species. Planta 229:549–558

    Article  CAS  PubMed  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  CAS  PubMed  Google Scholar 

  • Ow DW, Wood KV, DeLuca M, deWet JR, Helinski DR, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–859

    Article  CAS  PubMed  Google Scholar 

  • Palauqui J-C, Vaucheret H (1998) Transgenes are dispensible for the RNA degradation step of cosuppression. Proc Natl Acad Sci USA 95:9675–9680

    Article  CAS  PubMed  Google Scholar 

  • Peach C, Velten J (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17:49–60

    Article  CAS  PubMed  Google Scholar 

  • Rathus C, Bower R, Birch RG (1993) Effects of promoter intron and enhancer elements on transient gene expression in sugarcane and carrot protoplasts. Plant Mol Biol 23:613–618

    Article  CAS  PubMed  Google Scholar 

  • Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp A6/1–10

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Scheid OM, Jakovleva L, Afsar K, Maluszynska J, Paszkowski J (1996) A change of ploidy can modify epigenetic silencing. Proc Natl Acad Sci USA 93:7114–7119

    Article  Google Scholar 

  • Schledzewski K, Mendel RR (1994) Quantitative transient gene expression: comparison of the promoters for maize polyubiquitin1, rice actin1, maize-derived Emu and 35 S in cells of barley, maize and tobacco. Transgenic Res 3:249–255

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243–273

    Article  CAS  Google Scholar 

  • Traas J, Hulskamp M, Gendreau E, Hofte H (1998) Endoreduplication and development: Rule without dividing? Curr Opin Plant Biol 1:498–503

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: Mechanisms and regulations. Genes Dev 20:759–771

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel J-B, Mourrain P, Palauqui J-C, Vernhettes S (1998) Transgene-induced gene silencing in plants. Plant J 16:651–659

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2008) Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13:317–328

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O, Vain P, Angell S, Baulcombe DC (1998) Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177–187

    Article  CAS  PubMed  Google Scholar 

  • Wang ML, Goldstein C, Su W, Moore PH, Albert HH (2005) Production of biologically active GM-CSF in sugarcane: A secure biofactory. Transgenic Res 14:167–178

    Article  PubMed  Google Scholar 

  • Wei HR, Wang ML, Moore PH, Albert HH (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants. J Plant Physiol 160:1241–1251

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Uchholz WG, DeRose RT, Hall TC (1995) Characterization of a rice gene family encoding root-specific proteins. Plant Mol Biol 27:237–248

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xu J, Birch RG (1999) Engineered detoxification confers resistance against a pathogenic bacterium. Nat Biotechnol 17:1021–1024

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Zhang SB, Warkentin D, Sun BL, Wu TY, Wu R, Sticklen MB (1996) Analysis of the functional activity of the 1.4-kb 5′-region of the rice actin 1 gene in stable transgenic plants of maize (Zea mays L). Plant Sci 116:73–84

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Tony Cavallaro, Janette McDouall Stuart, and Simon Hansom for research assistance, and BSES Limited for assistance with sugarcane. This work was supported by the Australian Research Council through the industry collaborative grant scheme, and by the Sugar Research and Development Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Birch.

Additional information

Communicated by: Ray Ming

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birch, R.G., Bower, R.S. & Elliott, A.R. Highly Efficient, 5′-Sequence-Specific Transgene Silencing in a Complex Polyploid. Tropical Plant Biol. 3, 88–97 (2010). https://doi.org/10.1007/s12042-010-9047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-010-9047-0

Keywords

Navigation