Skip to main content
Log in

Genetic dissection of yield associated traits in a cross between cowpea and yard-long bean (Vigna unguiculata (L.) Walp.) based on DArT markers

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Both cowpea and yard-long bean belong to Vigna unguiculata ssp. unguiculata but have diverged through human induced evolution in sub-Saharan Africa and Asia, respectively. To map the quantitative trait loci (QTLs) for yield associated traits and derive new lines that may combine the attributes of both types, we developed a F2:3 mapping population derived from a cross between cowpea line TVu2185 and yard-long bean line TVu6642. Using DArT markers, a total of 30 QTLs accounting for 1.8–13.0% phenotypic variation was detected for pod and seed traits. Some novel major QTLs for peduncle number per plant (qPeN2.2), pod length (qPoL3), seed breadth (qSB4), length (qSL7.2) and thickness (qST9) identified on chromosomes 2, 3, 4, 7 and 9, respectively, are particularly interesting and need to be validated. Moreover, we confirmed previously reported QTLs for pod length (qPoL8) and 100-seed weight (qSW8) on chromosome 8 and for seed number per pod (qSN9.2) on chromosome 9 suggesting usefulness for marker-assisted-selection purpose. Notably, some QTLs for these traits were clustered especially on chromosomes 5, 7, 8, 9 and 10 indicating the presence of the same QTL or linked loci in these regions. Moreover, the involvement of epistasis was observed for trait expressions, but compared with the main effect QTLs, the phenotypic effects of epistatic-QTLs detected were much less. The present QTL analysis may provide a useful tool for breeders to formulate efficient breeding strategy for introgression of the desirable alleles for yield related traits in cowpea using molecular markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Andargie M., Paquet R. S., Gowda B. S., Muluvi G. M. and Timko M. P. 2011 Construction of a SSR-based genetic map and identification of QTL for domestication traits using recombinant inbred lines from a cross between wild and cultivated cowpea (V. unguiculata (L.) Walp.). Mol. Breed. 28, 413–420.

    Article  Google Scholar 

  • Aremu C. O. 2011 Trait response to early-generation selection using a common parent in two crosses of cowpea (Vigna unguiculata) for humid environment performance. Adv. Appl. Sci. Res2,155–160.

    Google Scholar 

  • Boukar O., Massawe F., Muranaka S., Franco J., Maziya-Dixon B., Singh B. et al. 2011 Evaluation of cowpea germplasm lines for protein and mineral concentrations in grains. Plant Genet. Resour. 9, 1–8.

    Article  Google Scholar 

  • Boukar O., Fatokun C. A., Huynh B. L., Roberts P. A. and Close T. J. 2016 Genomic tools in cowpea breeding programs: status and perspectives. Front. Plant Sci. 7, 757.

    Article  Google Scholar 

  • Chander S., Guo Y. Q., Yang X. H., Yan J. B., Zhang Y. R., Song T. M. et al. 2008 Genetic dissection of tocopherol content and composition in maize grain using quantitative trait loci analysis and the candidate gene approach. Mol. Breed. 22, 353–365.

    Article  CAS  Google Scholar 

  • Edae E. A., Olivera P. D., Jin Y. and Rouse M. N. 2017 Genotyping-by-sequencing facilitates a high-density consensus linkage map for Aegilops umbellulata, a wild relative of cultivated wheat. G3-Genes Genom. Genet. 7, 1551–1561.

    CAS  Google Scholar 

  • Egbadzor K. F., Yeboah M., Danquah E. Y., Ofori K. and Offei S. K. 2014 Identification of SNP markers associated with seed size in cowpea [Vigna unguiculata (L) Walp]. Int. J. Plant Breed. Genet. 7, 115–123.

    Article  Google Scholar 

  • FAOStat 2017 Food and Agriculture Organization of the United Nations Statistics Division: FAO Statistical Databases available at http://www.fao.org/faostat/en/#data/QC (accessed May 2019).

  • Fatokun C. A., Perrino P. and Ng N. Q. 1997 Wide crossing in African vigna species. Advances in cowpea research. In Co-publication of International Institute of Agriculture (IITA) and Japan International Center for Agricultural Sciences (JIRCAS), pp. 50–57. IITA, Ibadan.

  • Fatokun C. A., Menancio-Hautea D. I., Danesh D. and Young N. D. 1992 Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics 132, 841–846.

    Article  CAS  Google Scholar 

  • Fatokun C. A., Tarawali S. A., Singh B. B., Kormawa P. M. and Tamo M. 2002 Challenges and opportunities for enhancing sustainable cowpea production. In Proceedings of the World Cowpea Conference III held at the International Institute of Tropical Agriculture (IITA), 7–396. IITA, Ibadan.

  • Fatokun C. A., Ousmane B. and Muranaka S. 2012 Evaluation of cowpea (Vigna unguiculata (L.) Walp) germplasm lines for tolerance to drought. Plant Genet. Resour. 10, 171–176.

    Article  Google Scholar 

  • Fery R. L. 1990 The cowpea: production, utilization, and research in the United States. Hort. Rev. 12, 197–222.

    Google Scholar 

  • Hall A. E. 2004 Breeding for adaptation to drought and heat in cowpea. Eur. J. Agron. 21, 447–454.

    Article  Google Scholar 

  • Isemura T., Kaga A., Konishi S., Ando T., Tomooka N., Han O. K. et al. 2007 Genome dissection of traits related to domestication in azuki bean (Vigna angularis) and comparison with other warm-season legumes. Ann. Bot100, 1053–1071.

    Article  Google Scholar 

  • Kongjaimun A., Kaga A., Tomooka N., Somta P., Vaughan D. A. and Srinives P. 2012a The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis. Ann. Bot. 109, 1185–2000.

    Article  CAS  Google Scholar 

  • Kongjaimun A., Somta P., Tomooka N., Kaga A., Vaughan D. A. and Srinives P. 2012b QTL mapping of pod tenderness and total soluble solid in yardlong bean [Vigna unguiculata (L.) Walp. subsp. unguiculata cv.-gr. sesquipedalis]. Euphytica 189, 217–223.

    Article  Google Scholar 

  • Kongjaimun A., Kaga A., Tomooka N., Somta P., Shimizu T., Shu Y. et al. 2012c An SSR-based linkage map of yard-long bean (Vigna unguiculata (L.) Walp. subsp. unguiculata Sesquipedalis Group) and QTL analysis of pod length. Genome 55, 81–92.

    Article  CAS  Google Scholar 

  • Kosambi D. D. 1944 The estimation of map distances from recombination values. Ann. Eugen. 12, 172–175.

    Article  Google Scholar 

  • Li C. D., Fatokun C. A., Ubi B., Singh B. B. and Scoles G. J. 2001 Determining genetic similarities and relationships among cowpea breeding lines and cultivars by microsatellite markers. Crop Sci. 41, 189–197.

    Article  CAS  Google Scholar 

  • Lo S., Muñoz-Amatriaín M., Boukar O., Herniter I., Cisse N., Guo Y. N. et al. 2018 Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci. Rep. 8, 6261.

  • Meng L., Li H., Zhang L. and Wang J. 2015 QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 3, 269–283.

    Article  Google Scholar 

  • Murdock L. L., Coulibaly O., Higgins T. J. V., Huesing J. E., Ishiyaku M. and Sithole-Niang I. 2008 Cowpea. In Compendium of transgenic crop plants: Transgenic legume grains and forages (ed. C. Kole and T. C. Hall). Blackwell, New York.

    Google Scholar 

  • Pan L., Wang N., Wu Z., Guo R., Yu X., Zheng Y. et al. 2017 A high density genetic map derived from RAD sequencing and its application in QTL analysis of yield-related traits in Vigna unguiculata. Front. Plant. Sci. 8, 1544.

    Article  Google Scholar 

  • Pasquet R. S. 1999 Genetic relationships among subspecies of Vigna unguiculata (L.) Walp based on allozyme variation. Theor. Appl. Genet. 98, 1104–1119.

    Article  CAS  Google Scholar 

  • Pasquet R. S. 2000 Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp. Theor. Appl. Genet. 101, 211–219.

    Article  CAS  Google Scholar 

  • Romanus K. G., Hussein S. and Mashela W. P. 2008 Combining ability analysis and association of yield and yield components among selected cowpea lines. Euphytica 162, 205–210.

    Article  Google Scholar 

  • Singh B. B., Hartmann P., Fatokun C., Tamo M., Tarawali S. and Ortiz R. 2003 Recent progress in cowpea improvement. Chron. Horticult. 43, 8–12.

    Google Scholar 

  • Stuber C. W., Edwards M. and Wendel J. F. 1987 Molecular marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits 1. Crop Sci. 27, 639–648.

    Article  Google Scholar 

  • Suanum W., Somta P., Kongjaimun A., Yimram T., Kaga A., Tomooka N. et al. 2016 Co-localization of QTLs for pod fiber content and pod shattering in F2 and backcross populations between yardlong bean and wild cowpea. Mol. Breed. 36, 80.

    Article  Google Scholar 

  • Tantasawat P., Trongchuen J., Prajongjai T., Seehalak W. and Jittayasothorn Y. 2010 Variety identification and comparative analysis of genetic diversity in yardlong bean (Vigna unguiculata spp. sesquipedalis) using morphological characters, SSR and ISSR analysis. Sci. Hortic. 124, 204–216.

    Article  CAS  Google Scholar 

  • Timko M. P., Ehlers J. D. and Roberts P. A. 2007 Cowpea. In Pulses, sugar and tuber crops, pp. 49–67. Springer, Berlin, Heidelberg.

    Chapter  Google Scholar 

  • Ubi B. E., Mignouna H. and Thottappilly G. 2000 Construction of a genetic linkage map and QTL analysis using a recombinant inbred population derived from an intersubspecific cross of cowpea: Vigna unguiculata (L.) Walp. Breed. Sci50, 161–172.

    Article  CAS  Google Scholar 

  • Ullah M. Z., Hasan M. J., Rahman A. H. M. A. and Saki A. I. 2011 Genetic variability, character association and path analysis in yard long bean. SAARC J. Agri. 9, 9–16.

    Google Scholar 

  • Verdcourt B. 1970 Studies in the Leguminosae–Papilionoideae for the ‘Flora of Tropical East Africa’: IV. Kew Bull. 24, 507–569.

    Article  Google Scholar 

  • Watanabe S., Tajuddin T., Yamanaka N., Hayashi M. and Harada K. 2004 Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breed. Sci. 54, 399–407.

    Article  CAS  Google Scholar 

  • Xu P., Wu X., Wang B., Liu Y., Qin D., Ehlers J. D. et al. 2010 Development and polymorphism of Vigna unguiculata ssp. unguiculata microsatellite markers used for phylogenetic analysis in asparagus bean (Vigna unguiculata ssp. sesquipedalis (L.) Verdc.). Mol. Breed. 25, 675–684.

    Article  CAS  Google Scholar 

  • Xu P., Wu X., Wang B., Hu T., Lu Z., Liu Y. et al. 2013 QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits. BMC Genet. 14, 4.

    Article  Google Scholar 

  • Xu P., Wu X. Y., Munoz-Amatriain M., Wang B., Wu X. H., Hu Y. W. et al. 2017 Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (V. unguiculata L. Walp.). Plant Biotechnol. J. 15, 547–557.

    Article  CAS  Google Scholar 

  • Xu Y., Zhu L., Xiao J., Huang N. and McCouch S. R. 1997 Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol. Gen. Genet. 253, 535–545.

    Article  CAS  Google Scholar 

  • Yamanaka N., Ninomiya S., Hoshi M., Tsubokura Y., Yano M., Nagamura Y. et al. 2001 An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res. 8, 61–72.

    Article  CAS  Google Scholar 

  • Yan J., Tang H., Huang Y., Zheng Y., Chander S. and Li J. 2006 A genome scan for quantitative trait loci affecting grain yield and its components of maize both in single-and two-locus levels. Chin. Sci. Bull. 51, 1452–1461.

    CAS  Google Scholar 

Download references

Acknowledgements

The second author thank the Pan African University Institute of Life and Earth Sciences, University of Ibadan, Nigeria. The technical staff of cowpea breeding unit at IITA are acknowledged for their help in maintaining the cowpea populations in screenhouse and assisting in field experimentation as well as collecting the phenotypic data. Authors are thankful to IITA for providing support in infrastructure and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Fatokun.

Additional information

Corresponding editor: H. A. Ranganath

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Oliveira, A.L., Zate, Z.Z., Olasanmi, B. et al. Genetic dissection of yield associated traits in a cross between cowpea and yard-long bean (Vigna unguiculata (L.) Walp.) based on DArT markers. J Genet 99, 57 (2020). https://doi.org/10.1007/s12041-020-01216-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-01216-8

Keywords

Navigation