Skip to main content
Log in

Construction of a SSR-based genetic map and identification of QTL for domestication traits using recombinant inbred lines from a cross between wild and cultivated cowpea (V. unguiculata (L.) Walp.)

  • Short communication
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Cowpea (Vigna unguiculata (L.) Walp.) is a grain legume commonly grown and consumed in many parts of the tropics and subtropics. A genetic linkage map was constructed using simple sequence repeat (SSR) markers and a recombinant inbred (RI) population of159 individuals derived from a cross between the breeding line 524B, a California Blackeye, and 219-01, a perennial wild cowpea from Kenya. Out of 912 primer combinations predicted to amplify SSRs in cowpea, 639 reliably produced amplification products in PCR assays and 202 (31.6%) were polymorphic between the two parents. These polymorphic SSRs were used to construct a genetic map consisting of 11 linkage groups (LGs) spanning 677 cM, with an average distance between markers of 3 cM. Agronomic traits related to domestication (seed weight, pod shattering) were analyzed together with the genotypic data. Six quantitative trait loci (QTL) for seed size were revealed with the phenotypic variation ranging from 8.9 to 19.1%. Four QTL for pod shattering were identified with the phenotypic variation ranging from 6.4 to 17.2%. The QTL for seed size and pod shattering mainly cluster in two areas of LGs 1 and 10, facilitating the use of marker-assisted selection to eliminate undesirable wild phenotypes in breeding activities involving introgression of traits from wild germplasm. The generation of an SSR-based molecular map and additional trait-linked markers also contributes to the expanding tool kit available to cowpea breeders, especially in Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Acosta-Gallegos JA, Kelly JD, Gepts P (2007) Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47:S44–S59

    Article  Google Scholar 

  • Aliboh VO, Kehinde OB, Fawole I (1996) Inheritance of leaf mark, pod dehiscence & dry pod color in crosses between wild and cultivated cowpeas. Afr Crop Sci J 4:283–288

    Google Scholar 

  • Chen X, Laudeman TW, Rushton PJ, Spraggins TA, Timko MP (2007) CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic gene space sequences. BMC Bioinformatics 8:129–132

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Drabo I, Redden R, Smithson JB, Aggarwal VD (1984) Inheritance of seed size in cowpea (Vigna unguiculata (L.) Walp.). Euphytica 33:929–934

    Article  Google Scholar 

  • Fang JG, Chao CCT, Roberts PA, Ehlers JD (2007) Genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] in four West African and USA breeding programs as determined by AFLP analysis. Genet Resour Crop Evol 54:1197–1209

    Article  CAS  Google Scholar 

  • Fatokun CA, Menancio-Hautea DI, Danesh D, Young ND (1992) Evidence for orthologus seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics 132:841–846

    PubMed  CAS  Google Scholar 

  • Fery RL (1985) The genetics of cowpeas: a review of the world literature. In: Singh SR, Rachie KO (eds) Cowpea, research, production and utilization. Wiley, Chichester, pp 25–62

    Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Li C-D, Fatokun CA, Ubi B, Singh BB, Scoles GJ (2001) Determining genetic similarities among cowpea breeding lines and cultivars by microsatellites markers. Crop Sci 41:189–197

    Article  CAS  Google Scholar 

  • Liu B, Fujita T, Yan Z-H, Sakamoto S, Xu D, Abe J (2007) QTL mapping of domestication related traits in soybean (Glycine max). Ann Bot 100:1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Lush WM, Evans LT (1981) The domestication and improvement of cowpeas. Vigna unguiculata (L.) Walp. Euphytica 30:579–587

    Article  Google Scholar 

  • Menendez CM, Hall AE, Gepts P (1997) A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor Appl Genet 95:1210–1217

    Article  CAS  Google Scholar 

  • Mignouna HD, Ellis NTH, Asiedu R, Ng QN (1998) Analysis of genetic diversity in Guinea yams (Dioscorea spp.) using AFLP fingerprinting. Trop Agric 75:224–229

    Google Scholar 

  • Mohammed MS, Russom Z, Abdul SD (2010) Inheritance of hairiness and pod shattering, heritability and correlation studies in crosses between cultivated cowpea (V. unguiculata (L.) Walp.) and its wild (var pubescens) relative. Euphytica 171:397–407

    Article  Google Scholar 

  • Muchero W, Ndeye ND, Bhat PR, Fenton RD, Wanamaker S, Pottorff M, Hearne S, Cisse N, Fatokun C, Ehlers JD, Roberts PA, Close TA (2009) A consensus genetic map of cowpea (Vigna unguiculata (L) Walp.) and synteny based on EST-derived SNPs. Proc Natl Acad Sci USA 106:18159–18164

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Ouedraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, Hall AE, Gillaspie AG, Roberts PA, Ismail AM, Bruening G, Gepts P, Timko P, Belzile F (2002) An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD, biochemical markers, and biological resistance traits. Genome 45:175–188

    Article  PubMed  CAS  Google Scholar 

  • Pasquet RS, Baudoin JP (2001) Cowpea. In: Charrier A, Jacquot M, Hamon S, Nicolas D (eds) Tropical plant breeding. Science Publishers, Enfield, pp 177–198

    Google Scholar 

  • Swamy BPM, Sarla N (2008) Yield-enhancing quantitative trait loci (QTLs) from wild species. Biotechnol Adv 26:106–120

    Article  PubMed  CAS  Google Scholar 

  • Timko MP, Singh BB (2008) Cowpea, a multifunctional legume. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, pp 227–258

    Chapter  Google Scholar 

  • Timko MP, Rushton PJ, Laudeman TW, Bokowiec MT, Chipumuro E, Cheung F, Town CD, Chen Xianfeng (2008) Sequencing and analysis of the gene-rich space of cowpea. BMC Genomics 9:1471–2164

    Article  Google Scholar 

  • Ubi BE, Mignouna H, Thottappilly G (2000) Construction of a genetic linkage map and QTL analysis using a recombinant inbred population derived from an intersubspecific cross of cowpea (Vigna unguiculata (L.) Walp.). Breed Sci 50:161–172

    CAS  Google Scholar 

  • Van Ooijen JW (2006) Join Map® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma B. V., Wageningen

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Shi J, Carlson SR, Cregan PB, Ward RW, Diers BW (2003) Polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA markers. Crop Sci 43:1828–1832

    Article  CAS  Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253:535–545

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Wu X, Wang B, Liu Y, Quin D, Ehlers JD, Close TJ, Hu T, Lu Z, Li G (2010) Development and polymorphism of Vigna unguiculata ssp. unguiculata microsatellite markers used for phylogenetic analysis in asparagus bean (Vigna unguiculata ssp. sesquipedalis (L.) Verdc.). Mol Breed 25:675–684

    Article  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Theresa Fulton for suggestions on data analysis, as well as Beatrice Elesani from ICIPE Muhaka field station (Kenya) for her contribution to the building of the recombinant inbred family. These studies were supported by funds from the Kirkhouse Trust and the German Academic Exchange Program (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Timko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andargie, M., Pasquet, R.S., Gowda, B.S. et al. Construction of a SSR-based genetic map and identification of QTL for domestication traits using recombinant inbred lines from a cross between wild and cultivated cowpea (V. unguiculata (L.) Walp.). Mol Breeding 28, 413–420 (2011). https://doi.org/10.1007/s11032-011-9598-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9598-2

Keywords

Navigation