Skip to main content

Advertisement

Log in

Transient Receptor Potential Vanilloid 4: a Double-Edged Sword in the Central Nervous System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel that can be activated by diverse stimuli, such as heat, mechanical force, hypo-osmolarity, and arachidonic acid metabolites. TRPV4 is widely expressed in the central nervous system (CNS) and participates in many significant physiological processes. However, accumulative evidence has suggested that deficiency, abnormal expression or distribution, and overactivation of TRPV4 are involved in pathological processes of multiple neurological diseases. Here, we review the latest studies concerning the known features of this channel, including its expression, structure, and its physiological and pathological roles in the CNS, proposing an emerging therapeutic strategy for CNS diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

TRPV4:

Transient receptor potential vanilloid 4

VR-OAC:

Vanilloid receptor-related osmotically activated channel

CNS:

Central nervous system

TRP:

Transient receptor potential

AA:

Arachidonic acid

4α-PDD:

4α-Phorbol 12, 13-didecanoate

ARDs:

Ankyrin repeat domains

Src:

Proto-oncogene tyrosine-protein kinase

Pacsin3:

Protein kinase C and casein kinase substrate in neurons protein 3

AIP4:

Atrophin-interacting protein 4

MAP7:

Microtubule-associated protein-7

MS:

Multiple sclerosis

AD:

Alzheimer’s disease

EAE:

Experimental autoimmune encephalomyelitis

OVLT:

Organum vasculosum of the lamina terminalis

SFO:

Subfornical organ

SON:

Supraoptic nucleus

PVN:

Paraventricular nucleus

AVP:

Arginine vasopressin

RVD:

Regulatory volume decrease

CPECs:

Choroid plexus epithelial cells

ANO1:

Anoctamin 1

BCECs:

Brain capillary endothelial cells

BBB:

Blood-brain barrier

PO/AH:

Preoptic area/anterior hypothalamus

MNCs:

Magnocellular neurosecretory cells

RMP:

Resting membrane potential

APs:

Action potentials

BCSFB:

Blood cerebrospinal fluid barrier

TBI:

Traumatic brain injury

MCAO:

Middle cerebral artery occlusion

ICH:

Intracerebral hemorrhage

ZO-1:

Zonula occludens-1

MMP-2/9:

Matrix metalloproteinases-2/9

A2M:

α-2-macroglobulin

CSF:

Cerebrospinal fluid

NVC:

Neurovascular coupling

CBF:

Cerebral blood flow

IP3Rs:

Inositol trisphosphate receptors

GqPCRs:

Gq-protein-coupled receptors

PLC:

Phospholipase C

NO:

Nitric oxide

EDHF:

Endothelium-derived hyperpolarizing factor

aECs:

Arteriolar endothelial cells

SMCs:

Smooth muscle cells

eNOS:

Endothelial NO synthase

FCD:

Focal cortical dysplasia

TSC:

Tuberous sclerosis complex

GFAP:

Glial fibrillary acidic protein

PKC:

Protein kinase C

NMDA:

N-methyl-D-aspartate

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

GABA:

γ-aminobutyric acid

IGABA :

γ-aminobutyric acid-activated current

AMPK:

AMP-activated protein kinase

PI3K/Akt:

Phosphatidyl inositol 3 kinase protein kinase B

PISE:

Pilocarpine-induced status epilepticus

IK :

Delayed rectifier current

KCHIP2:

K+ channel interacting protein 2

IA :

Rapidly inactivating potassium current

NLRP3:

Nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3

MCAO:

Middle cerebral artery occlusion

INMDA :

NMDA-activated current

p38 MAPK:

p38 mitogen-activated protein kinase

Aβ:

Amyloid β

SMA:

Spinal muscular atrophy

EMT:

Epithelial-mesenchymal transformation

Rac1:

Ras-related C3 botulinum toxin substrate 1

ECM:

Extracellular matrix

Cdc42:

Cell division cycle 42

N‑wasp:

Neural Wiskott–Aldrich syndrome proteins

CaMKII:

Calmodulin-dependent protein kinase II

FADD:

Fas-associated protein with death domain

ECs:

Endothelial cells

E-cad:

E‐cadherin

N-cad:

N‐cadherin

α‐SMA:

α‐smooth muscle actin

YAP/TAZ:

Yes-associated protein/transcriptional coactivator with PDZ

ROCK1:

Rho-associated protein kinase

VEGF:

Vascular endothelial growth factor

IFN- ɣ:

Interferon-ɣ

TBI:

Traumatic brain injury

SCI:

Spinal cord injury

CBD:

Cannabidiol

ENS:

Excitatory neurotransmitter system

INS:

Inhibitory neurotransmitter system

References

  1. Montell C, Rubin GM (1989) Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2(4):1313–1323. https://doi.org/10.1016/0896-6273(89)90069-X

    Article  CAS  Google Scholar 

  2. Damann N, Voets T, Nilius B (2008) TRPs in our senses. Curr Biol 18(18):R880-889. https://doi.org/10.1016/j.cub.2008.07.063

    Article  CAS  Google Scholar 

  3. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2(10):695–702. https://doi.org/10.1038/35036318

    Article  CAS  Google Scholar 

  4. Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM et al (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103(3):525–535. https://doi.org/10.1016/S0092-8674(00)00143-4

    Article  CAS  Google Scholar 

  5. Stewart AP, Smith GD, Sandford RN, Edwardson JM (2010) Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer. Biophys J 99(3):790–797. https://doi.org/10.1016/j.bpj.2010.05.012

    Article  CAS  Google Scholar 

  6. Ma X, Cheng KT, Wong CO, O’Neil RG, Birnbaumer L, Ambudkar IS, Yao X (2011) Heteromeric TRPV4-C1 channels contribute to store-operated Ca(2+) entry in vascular endothelial cells. Cell Calcium 50(6):502–509. https://doi.org/10.1016/j.ceca.2011.08.006

    Article  CAS  Google Scholar 

  7. Du J, Ma X, Shen B, Huang Y, Birnbaumer L, Yao X (2014) TRPV4, TRPC1, and TRPP2 assemble to form a flow-sensitive heteromeric channel. FASEB J: Off Publ Fed Am Soc Exp Biol 28(11):4677–4685. https://doi.org/10.1096/fj.14-251652

    Article  CAS  Google Scholar 

  8. Shigematsu H, Sokabe T, Danev R, Tominaga M, Nagayama K (2010) A 3.5-nm structure of rat TRPV4 cation channel revealed by Zernike phase-contrast cryoelectron microscopy. J Biol Chem 285(15):11210–11218

    Article  CAS  Google Scholar 

  9. White JP, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I (2016) TRPV4: molecular conductor of a diverse orchestra. Physiol Rev 96(3):911–973. https://doi.org/10.1152/physrev.00016.2015

    Article  CAS  Google Scholar 

  10. Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bodding M, Droogmans G et al (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277(37):33704–33710. https://doi.org/10.1074/jbc.M204828200

    Article  CAS  Google Scholar 

  11. Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286(2):C195-205. https://doi.org/10.1152/ajpcell.00365.2003

    Article  CAS  Google Scholar 

  12. Wegierski T, Lewandrowski U, Muller B, Sickmann A, Walz G (2009) Tyrosine phosphorylation modulates the activity of TRPV4 in response to defined stimuli. J Biol Chem 284(5):2923–2933. https://doi.org/10.1074/jbc.M805357200

    Article  CAS  Google Scholar 

  13. Arniges M, Fernandez-Fernandez JM, Albrecht N, Schaefer M, Valverde MA (2006) Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 281(3):1580–1586. https://doi.org/10.1074/jbc.M511456200

    Article  CAS  Google Scholar 

  14. Chang Q, Gyftogianni E, van de Graaf SF, Hoefs S, Weidema FA, Bindels RJ, Hoenderop JG (2004) Molecular determinants in TRPV5 channel assembly. J Biol Chem 279(52):54304–54311. https://doi.org/10.1074/jbc.M406222200

    Article  CAS  Google Scholar 

  15. Xu H, Fu Y, Tian W, Cohen DM (2006) Glycosylation of the osmoresponsive transient receptor potential channel TRPV4 on Asn-651 influences membrane trafficking. Am J Physiol Renal Physiol 290(5):F1103-1109. https://doi.org/10.1152/ajprenal.00245.2005

    Article  CAS  Google Scholar 

  16. Cuajungco MP, Grimm C, Oshima K, D’Hoedt D, Nilius B, Mensenkamp AR, Bindels RJ, Plomann M et al (2006) PACSINs bind to the TRPV4 cation channel. PACSIN 3 modulates the subcellular localization of TRPV4. J Biol Chem 281(27):18753–18762

    Article  CAS  Google Scholar 

  17. D’Hoedt D, Owsianik G, Prenen J, Cuajungco MP, Grimm C, Heller S, Voets T, Nilius B (2008) Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3. J Biol Chem 283(10):6272–6280. https://doi.org/10.1074/jbc.M706386200

    Article  CAS  Google Scholar 

  18. Wegierski T, Hill K, Schaefer M, Walz G (2006) The HECT ubiquitin ligase AIP4 regulates the cell surface expression of select TRP channels. EMBO J 25(24):5659–5669. https://doi.org/10.1038/sj.emboj.7601429

    Article  CAS  Google Scholar 

  19. Suzuki M, Hirao A, Mizuno A (2003) Microtubule-associated [corrected] protein 7 increases the membrane expression of transient receptor potential vanilloid 4 (TRPV4). J Biol Chem 278(51):51448–51453. https://doi.org/10.1074/jbc.M308212200

    Article  CAS  Google Scholar 

  20. Watanabe H, Vriens J, Janssens A, Wondergem R, Droogmans G, Nilius B (2003) Modulation of TRPV4 gating by intra- and extracellular Ca2+. Cell Calcium 33(5–6):489–495. https://doi.org/10.1016/S0143-4160(03)00064-2

    Article  CAS  Google Scholar 

  21. Strotmann R, Schultz G, Plant TD (2003) Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J Biol Chem 278(29):26541–26549. https://doi.org/10.1074/jbc.M302590200

    Article  CAS  Google Scholar 

  22. Kunert-Keil C, Bisping F, Kruger J, Brinkmeier H (2006) Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7:159. https://doi.org/10.1186/1471-2164-7-159

    Article  CAS  Google Scholar 

  23. Chung MK, Lee H, Caterina MJ (2003) Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem 278(34):32037–32046. https://doi.org/10.1074/jbc.M303251200

    Article  CAS  Google Scholar 

  24. Shibasaki K, Tominaga M, Ishizaki Y (2015) Hippocampal neuronal maturation triggers post-synaptic clustering of brain temperature-sensor TRPV4. Biochem Biophys Res Commun 458(1):168–173. https://doi.org/10.1016/j.bbrc.2015.01.087

    Article  CAS  Google Scholar 

  25. Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, Ferroni S, Anderova M (2012) The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS ONE 7(6):e39959. https://doi.org/10.1371/journal.pone.0039959

    Article  CAS  Google Scholar 

  26. Dunn KM, Hill-Eubanks DC, Liedtke WB, Nelson MT (2013) TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc Natl Acad Sci USA 110(15):6157–6162. https://doi.org/10.1073/pnas.1216514110

    Article  CAS  Google Scholar 

  27. Konno M, Shirakawa H, Iida S, Sakimoto S, Matsutani I, Miyake T, Kageyama K, Nakagawa T et al (2012) Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia 60(5):761–770. https://doi.org/10.1002/glia.22306

    Article  Google Scholar 

  28. Janas S, Seghers F, Schakman O, Alsady M, Deen P, Vriens J, Tissir F, Nilius B et al (2016) TRPV4 is associated with central rather than nephrogenic osmoregulation. Pflugers Arch 468(9):1595–1607. https://doi.org/10.1007/s00424-016-1850-5

    Article  CAS  Google Scholar 

  29. Takayama Y, Shibasaki K, Suzuki Y, Yamanaka A, Tominaga M (2014) Modulation of water efflux through functional interaction between TRPV4 and TMEM16A/anoctamin 1. FASEB J: Off Publ Fed Am Soc Exp Biol 28(5):2238–2248. https://doi.org/10.1096/fj.13-243436

    Article  CAS  Google Scholar 

  30. Filosa JA, Yao X, Rath G (2013) TRPV4 and the regulation of vascular tone. J Cardiovasc Pharmacol 61(2):113–119. https://doi.org/10.1097/FJC.0b013e318279ba42

    Article  CAS  Google Scholar 

  31. Hatano N, Suzuki H, Itoh Y, Muraki K (2013) TRPV4 partially participates in proliferation of human brain capillary endothelial cells. Life Sci 92(4–5):317–324. https://doi.org/10.1016/j.lfs.2013.01.002

    Article  CAS  Google Scholar 

  32. Sudbury JR, Bourque CW (2013) Dynamic and permissive roles of TRPV1 and TRPV4 channels for thermosensation in mouse supraoptic magnocellular neurosecretory neurons. J Neurosci: Off J Soc Neurosci 33(43):17160–17165. https://doi.org/10.1523/JNEUROSCI.1048-13.2013

    Article  CAS  Google Scholar 

  33. Ohashi K, Deyashiki A, Miyake T, Nagayasu K, Shibasaki K, Shirakawa H, Kaneko S (2018) TRPV4 is functionally expressed in oligodendrocyte precursor cells and increases their proliferation. Pflugers Arch 470(5):705–716. https://doi.org/10.1007/s00424-018-2130-3

    Article  CAS  Google Scholar 

  34. Mamenko M, Zaika O, Boukelmoune N, O’Neil RG, Pochynyuk O (2015) Deciphering physiological role of the mechanosensitive TRPV4 channel in the distal nephron. Am J Physiol Renal Physiol 308(4):F275-286. https://doi.org/10.1152/ajprenal.00485.2014

    Article  CAS  Google Scholar 

  35. Lee JC, Choe SY (2014) Age-related changes in the distribution of transient receptor potential vanilloid 4 channel (TRPV4) in the central nervous system of rats. J Mol Histol 45(5):497–505. https://doi.org/10.1007/s10735-014-9578-z

    Article  CAS  Google Scholar 

  36. Oldfield BJ, Badoer E, Hards DK, McKinley MJ (1994) Fos production in retrogradely labelled neurons of the lamina terminalis following intravenous infusion of either hypertonic saline or angiotensin II. Neuroscience 60(1):255–262. https://doi.org/10.1002/emmm.201000080

    Article  CAS  Google Scholar 

  37. Oliet SH, Bourque CW (1992) Properties of supraoptic magnocellular neurones isolated from the adult rat. J Physiol 455:291–306. https://doi.org/10.1113/jphysiol.1992.sp019302

    Article  CAS  Google Scholar 

  38. Oliet SH, Bourque CW (1993) Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature 364(6435):341–343. https://doi.org/10.1038/364341a0

    Article  CAS  Google Scholar 

  39. Carreno FR, Ji LL, Cunningham JT (2009) Altered central TRPV4 expression and lipid raft association related to inappropriate vasopressin secretion in cirrhotic rats. Am J Physiol Regul Integr Comp Physiol 296(2):R454-466. https://doi.org/10.1152/ajpregu.90460.2008

    Article  CAS  Google Scholar 

  40. Shenton FC, Pyner S (2018) Transient receptor potential vanilloid type 4 is expressed in vasopressinergic neurons within the magnocellular subdivision of the rat paraventricular nucleus of the hypothalamus. J Comp Neurol 526(18):3035–3044. https://doi.org/10.1002/cne.24514

    Article  CAS  Google Scholar 

  41. Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci USA 100(23):13698–13703. https://doi.org/10.1073/pnas.1735416100

    Article  CAS  Google Scholar 

  42. Tian W, Fu Y, Garcia-Elias A, Fernandez-Fernandez JM, Vicente R, Kramer PL, Klein RF, Hitzemann R et al (2009) A loss-of-function nonsynonymous polymorphism in the osmoregulatory TRPV4 gene is associated with human hyponatremia. Proc Natl Acad Sci USA 106(33):14034–14039. https://doi.org/10.1073/pnas.0904084106

    Article  Google Scholar 

  43. Jo AO, Ryskamp DA, Phuong TT, Verkman AS, Yarishkin O, MacAulay N, Krizaj D (2015) TRPV4 and AQP4 channels synergistically regulate cell volume and calcium homeostasis in retinal Muller glia. J Neurosci: Off J Soc Neurosci 35(39):13525–13537. https://doi.org/10.1523/JNEUROSCI.1987-15.2015

    Article  CAS  Google Scholar 

  44. Benfenati V, Caprini M, Dovizio M, Mylonakou MN, Ferroni S, Ottersen OP, Amiry-Moghaddam M (2011) An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Natl Acad Sci USA 108(6):2563–2568. https://doi.org/10.1073/pnas.1012867108

    Article  Google Scholar 

  45. Liedtke W (2008) Molecular mechanisms of TRPV4-mediated neural signaling. Ann N Y Acad Sci 1144:42–52. https://doi.org/10.1196/annals.1418.012

    Article  CAS  Google Scholar 

  46. Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129(4):877–896. https://doi.org/10.1016/j.neuroscience.2004.09.053

    Article  CAS  Google Scholar 

  47. Cheung G, Sibille J, Zapata J, Rouach N (2015) Activity-dependent plasticity of astroglial potassium and glutamate clearance. Neural Plast 2015:109106. https://doi.org/10.1155/2015/109106

    Article  Google Scholar 

  48. Benfenati V, Amiry-Moghaddam M, Caprini M, Mylonakou MN, Rapisarda C, Ottersen OP, Ferroni S (2007) Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience 148(4):876–892. https://doi.org/10.1016/j.neuroscience.2007.06.039

    Article  CAS  Google Scholar 

  49. Becker D, Bereiter-Hahn J, Jendrach M (2009) Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation. Eur J Cell Biol 88(3):141–152. https://doi.org/10.1016/j.ejcb.2008.10.002

    Article  CAS  Google Scholar 

  50. O’Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch 451(1):193–203. https://doi.org/10.1007/s00424-005-1424-4

    Article  CAS  Google Scholar 

  51. Yin J, Kuebler WM (2010) Mechanotransduction by TRP channels: general concepts and specific role in the vasculature. Cell Biochem Biophys 56(1):1–18. https://doi.org/10.1007/s12013-009-9067-2

    Article  CAS  Google Scholar 

  52. Mizuno A, Matsumoto N, Imai M, Suzuki M (2003) Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol 285(1):C96-101. https://doi.org/10.1152/ajpcell.00559.2002

    Article  CAS  Google Scholar 

  53. Gao X, Wu L, O’Neil RG (2003) Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 278(29):27129–27137. https://doi.org/10.1074/jbc.M302517200

    Article  CAS  Google Scholar 

  54. Gu Y, Jukkola P, Wang Q, Esparza T, Zhao Y, Brody D, Gu C (2017) Polarity of varicosity initiation in central neuron mechanosensation. J Cell Biol 216(7):2179–2199. https://doi.org/10.1083/jcb.201606065

    Article  CAS  Google Scholar 

  55. Shi M, Du F, Liu Y, Li L, Cai J, Zhang GF, Xu XF, Lin T et al (2013) Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment. Acta Neuropathol 126(5):725–739. https://doi.org/10.1007/s00401-013-1166-x

    Article  CAS  Google Scholar 

  56. Mori Y, Voets T (2018) Sensors and regulatory mechanisms of thermal physiology. Pflugers Arch 470(5):703–704. https://doi.org/10.1007/s00424-018-2138-8

    Article  CAS  Google Scholar 

  57. Hoffstaetter LJ, Bagriantsev SN, Gracheva EO TRPs et al (2018) A molecular toolkit for thermosensory adaptations. Pflugers Archiv Eur J Physiol 470(5):745–759

    Article  CAS  Google Scholar 

  58. Lamas JA, Rueda-Ruzafa L, Herrera-Perez S (2019) Ion channels and thermosensitivity: TRP, TREK, or both? Int J Mol Sci 20(10):2371. https://doi.org/10.3390/ijms20102371

  59. Lowry CA, Lightman SL, Nutt DJ (2009) That warm fuzzy feeling: brain serotonergic neurons and the regulation of emotion. J Psychopharmacol 23(4):392–400. https://doi.org/10.1177/0269881108099956

    Article  CAS  Google Scholar 

  60. Yadav R, Jaryal AK, Mallick HN (2017) Participation of preoptic area TRPV4 ion channel in regulation of body temperature. J Therm Biol 66:81–86. https://doi.org/10.1016/j.jtherbio.2017.04.001

    Article  CAS  Google Scholar 

  61. Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci: Off J Soc Neurosci 22(15):6408–6414. https://doi.org/10.1523/JNEUROSCI.22-15-06408.2002

    Article  CAS  Google Scholar 

  62. Shibasaki K, Sugio S, Takao K, Yamanaka A, Miyakawa T, Tominaga M, Ishizaki Y (2015) TRPV4 activation at the physiological temperature is a critical determinant of neuronal excitability and behavior. Pflugers Arch 467(12):2495–2507. https://doi.org/10.1007/s00424-015-1726-0

    Article  CAS  Google Scholar 

  63. Shibasaki K, Suzuki M, Mizuno A, Tominaga M (2007) Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci: Off J Soc Neurosci 27(7):1566–1575. https://doi.org/10.1523/JNEUROSCI.4284-06.2007

    Article  CAS  Google Scholar 

  64. Todaka H, Taniguchi J, Satoh J, Mizuno A, Suzuki M (2004) Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J Biol Chem 279(34):35133–35138. https://doi.org/10.1074/jbc.M406260200

    Article  CAS  Google Scholar 

  65. Lee H, Iida T, Mizuno A, Suzuki M, Caterina MJ (2005) Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J Neurosci: Off J Soc Neurosci 25(5):1304–1310. https://doi.org/10.1523/JNEUROSCI.4745.04.2005

    Article  CAS  Google Scholar 

  66. Willette RN, Bao W, Nerurkar S, Yue TL, Doe CP, Stankus G, Turner GH, Ju H et al (2008) Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J Pharmacol Exp Ther 326(2):443–452. https://doi.org/10.1124/jpet.107.134551

    Article  CAS  Google Scholar 

  67. Zhao H, Zhang K, Tang R, Meng H, Zou Y, Wu P, Hu R, Liu X et al (2018) TRPV4 blockade preserves the blood-brain barrier by inhibiting stress fiber formation in a rat model of intracerebral hemorrhage. Front Mol Neurosci 11:97. https://doi.org/10.3389/fnmol.2018.00097

    Article  CAS  Google Scholar 

  68. Jie P, Tian Y, Hong Z, Li L, Zhou L, Chen L, Chen L (2015) Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice. Front Cell Neurosci 9:141. https://doi.org/10.3389/fncel.2015.00141

    Article  CAS  Google Scholar 

  69. Reiter B, Kraft R, Gunzel D, Zeissig S, Schulzke JD, Fromm M, Harteneck C (2006) TRPV4-mediated regulation of epithelial permeability. FASEB J: Off Publ Fed Am Soc Exp Biol 20(11):1802–1812. https://doi.org/10.1096/fj.06-5772com

    Article  CAS  Google Scholar 

  70. Narita K, Sasamoto S, Koizumi S, Okazaki S, Nakamura H, Inoue T, Takeda S (2015) TRPV4 regulates the integrity of the blood-cerebrospinal fluid barrier and modulates transepithelial protein transport. FASEB J: Off Publ Fed Am Soc Exp Biol 29(6):2247–2259. https://doi.org/10.1096/fj.14-261396

    Article  CAS  Google Scholar 

  71. Brinker T, Stopa E, Morrison J, Klinge P (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10. https://doi.org/10.1186/2045-8118-11-10

    Article  CAS  Google Scholar 

  72. Preston D, Simpson S, Halm D, Hochstetler A, Schwerk C, Schroten H, Blazer-Yost BL (2018) Activation of TRPV4 stimulates transepithelial ion flux in a porcine choroid plexus cell line. Am J Physiol Cell Physiol 315(3):C357–C366. https://doi.org/10.1152/ajpcell.00312.2017

    Article  CAS  Google Scholar 

  73. Koehler RC, Roman RJ, Harder DR (2009) Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32(3):160–169. https://doi.org/10.1016/j.tins.2008.11.005

    Article  CAS  Google Scholar 

  74. Girouard H, Bonev AD, Hannah RM, Meredith A, Aldrich RW, Nelson MT (2010) Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proc Natl Acad Sci USA 107(8):3811–3816. https://doi.org/10.1073/pnas.0914722107

    Article  Google Scholar 

  75. Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR, Brayden JE, Hill-Eubanks D, Nelson MT (2017) Capillary K(+)-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci 20(5):717–726. https://doi.org/10.1038/nn.4533

    Article  CAS  Google Scholar 

  76. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90(1):291–366. https://doi.org/10.1152/physrev.00021.2009

    Article  CAS  Google Scholar 

  77. Longden TA, Nelson MT (2015) Vascular inward rectifier K+ channels as external K+ sensors in the control of cerebral blood flow. Microcirculation 22(3):183–196. https://doi.org/10.1111/micc.12190

    Article  CAS  Google Scholar 

  78. Harraz OF, Longden TA, Hill-Eubanks D, Nelson MT (2018) PIP2 depletion promotes TRPV4 channel activity in mouse brain capillary endothelial cells. Elife 7:e38689. https://doi.org/10.7554/eLife.38689

    Article  Google Scholar 

  79. Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kotlikoff MI, Heppner TJ, Hill-Eubanks DC, Nelson MT (2012) Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336(6081):597–601. https://doi.org/10.1126/science.1216283

    Article  CAS  Google Scholar 

  80. Ding XL, Wang YH, Ning LP, Zhang Y, Ge HY, Jiang H, Wang R, Yue SW (2010) Involvement of TRPV4-NO-cGMP-PKG pathways in the development of thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats. Behav Brain Res 208(1):194–201. https://doi.org/10.1016/j.bbr.2009.11.034

    Article  CAS  Google Scholar 

  81. Zhang DX, Mendoza SA, Bubolz AH, Mizuno A, Ge ZD, Li R, Warltier DC, Suzuki M et al (2009) Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension 53(3):532–538. https://doi.org/10.1161/HYPERTENSIONAHA.108.127100

    Article  CAS  Google Scholar 

  82. Kohler R, Heyken WT, Heinau P, Schubert R, Si H, Kacik M, Busch C, Grgic I et al (2006) Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler Thromb Vasc Biol 26(7):1495–1502. https://doi.org/10.1161/01.ATV.0000225698.36212.6a

    Article  CAS  Google Scholar 

  83. Chow BW, Nunez V, Kaplan L, Granger AJ, Bistrong K, Zucker HL, Kumar P, Sabatini BL et al (2020) Caveolae in CNS arterioles mediate neurovascular coupling. Nature 579(7797):106–110. https://doi.org/10.1038/s41586-020-2026-1

    Article  CAS  Google Scholar 

  84. Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96(1):17–42. https://doi.org/10.1016/j.neuron.2017.07.030

    Article  CAS  Google Scholar 

  85. Goedicke-Fritz S, Kaistha A, Kacik M, Markert S, Hofmeister A, Busch C, Banfer S, Jacob R et al (2015) Evidence for functional and dynamic microcompartmentation of Cav-1/TRPV4/K(Ca) in caveolae of endothelial cells. Eur J Cell Biol 94(7–9):391–400. https://doi.org/10.1016/j.ejcb.2015.06.002

    Article  CAS  Google Scholar 

  86. Duncan JS, Sander JW, Sisodiya SM, Walker MC (2006) Adult epilepsy. Lancet 367(9516):1087–1100. https://doi.org/10.1016/S0140-6736(06)68477-8

    Article  Google Scholar 

  87. Chen X, Yang M, Sun F, Liang C, Wei Y, Wang L, Yue J, Chen B et al (2016) Expression and cellular distribution of transient receptor potential vanilloid 4 in cortical tubers of the tuberous sclerosis complex. Brain Res 1636:183–192. https://doi.org/10.1016/j.brainres.2016.02.012

    Article  CAS  Google Scholar 

  88. Chen X, Sun FJ, Wei YJ, Wang LK, Zang ZL, Chen B, Li S, Liu SY et al (2016) Increased expression of transient receptor potential vanilloid 4 in cortical lesions of patients with focal cortical dysplasia. CNS Neurosci Ther 22(4):280–290. https://doi.org/10.1111/cns.12494

    Article  CAS  Google Scholar 

  89. Hunt RF, Hortopan GA, Gillespie A, Baraban SC (2012) A novel zebrafish model of hyperthermia-induced seizures reveals a role for TRPV4 channels and NMDA-type glutamate receptors. Exp Neurol 237(1):199–206. https://doi.org/10.1016/j.expneurol.2012.06.013

    Article  CAS  Google Scholar 

  90. Shibasaki K, Yamada K, Miwa H, Yanagawa Y, Suzuki M, Tominaga M, Ishizaki Y (2020) Temperature elevation in epileptogenic foci exacerbates epileptic discharge through TRPV4 activation. Lab Invest J Tech Meth Pathol 100(2):274–284. https://doi.org/10.1038/s41374-019-0335-5

    Article  CAS  Google Scholar 

  91. Hong Z, Jie P, Tian Y, Chen T, Chen L, Chen L (2016) Transient receptor potential vanilloid 4-induced modulation of voltage-gated sodium channels in hippocampal neurons. Mol Neurobiol 53(1):759–768. https://doi.org/10.1007/s12035-014-9038-5

    Article  CAS  Google Scholar 

  92. Shibasaki K (2020) TRPV4 activation by thermal and mechanical stimuli in disease progression. Lab Invest J Tech Meth Pathol 100(2):218–223. https://doi.org/10.1038/s41374-019-0362-2

    Article  Google Scholar 

  93. Li L, Qu W, Zhou L, Lu Z, Jie P, Chen L, Chen L (2013) Activation of transient receptor potential vanilloid 4 increases nmda-activated current in hippocampal pyramidal neurons. Front Cell Neurosci 7:17. https://doi.org/10.3389/fncel.2013.00017

    Article  CAS  Google Scholar 

  94. Cao DS, Yu SQ, Premkumar LS (2009) Modulation of transient receptor potential vanilloid 4-mediated membrane currents and synaptic transmission by protein kinase C. Mol Pain 5:5. https://doi.org/10.1186/1744-8069-5-5

    Article  CAS  Google Scholar 

  95. Li L, Yin J, Jie PH, Lu ZH, Zhou LB, Chen L, Chen L (2013) Transient receptor potential vanilloid 4 mediates hypotonicity-induced enhancement of synaptic transmission in hippocampal slices. CNS Neurosci Ther 19(11):854–862. https://doi.org/10.1111/cns.12143

    Article  CAS  Google Scholar 

  96. Hong Z, Tian Y, Qi M, Li Y, Du Y, Chen L, Liu W, Chen L (2016) Transient receptor potential vanilloid 4 inhibits gamma-aminobutyric acid-activated current in hippocampal pyramidal neurons. Front Mol Neurosci 9:77. https://doi.org/10.3389/fnmol.2016.00077

    Article  CAS  Google Scholar 

  97. Men C, Wang Z, Zhou L, Qi M, An D, Xu W, Zhan Y, Chen L (2019) Transient receptor potential vanilloid 4 is involved in the upregulation of connexin expression following pilocarpine-induced status epilepticus in mice. Brain Res Bull 152:128–133. https://doi.org/10.1016/j.brainresbull.2019.07.004

    Article  CAS  Google Scholar 

  98. Zhou L, Xu W, An D, Sha S, Men C, Li Y, Wang X, Du Y et al (2021) Transient receptor potential vanilloid 4 activation inhibits the delayed rectifier potassium channels in hippocampal pyramidal neurons: an implication in pathological changes following pilocarpine-induced status epilepticus. J Neurosci Res 99(3):914–926. https://doi.org/10.1002/jnr.24749

    Article  CAS  Google Scholar 

  99. Xu W, Wang Y, Qi X, Li K, Zhou L, Sha S, Wang X, Wu C et al (2021) Involvement of TRPV4 in changes in rapidly inactivating potassium channels in the early stage of pilocarpine-induced status epilepticus in mice. J Cell Physiol. https://doi.org/10.1002/jcp.30558

    Article  Google Scholar 

  100. Wang Z, Zhou L, An D, Xu W, Wu C, Sha S, Li Y, Zhu Y et al (2019) TRPV4-induced inflammatory response is involved in neuronal death in pilocarpine model of temporal lobe epilepsy in mice. Cell Death Dis 10(6):386. https://doi.org/10.1038/s41419-019-1612-3

    Article  CAS  Google Scholar 

  101. Wang S, He H, Long J, Sui X, Yang J, Lin G, Wang Q, Wang Y et al (2021) TRPV4 regulates soman-induced status epilepticus and secondary brain injury via nmda receptor and nlrp3 inflammasome. Neurosci Bull 37(7):905–920. https://doi.org/10.1007/s12264-021-00662-3

    Article  CAS  Google Scholar 

  102. Zeng ML, Cheng JJ, Kong S, Yang XL, Jia XL, Cheng XL, Chen L, He FG et al (2022) Inhibition of transient receptor potential vanilloid 4 (trpv4) mitigates seizures. Neurother J Am Soc Exp Neurother. https://doi.org/10.1007/s13311-022-01198-8

    Article  Google Scholar 

  103. Rakers C, Schmid M, Petzold GC (2017) TRPV4 channels contribute to calcium transients in astrocytes and neurons during peri-infarct depolarizations in a stroke model. Glia 65(9):1550–1561. https://doi.org/10.1002/glia.23183

    Article  Google Scholar 

  104. Bai JZ, Lipski J (2010) Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology 31(2):204–214. https://doi.org/10.1016/j.neuro.2010.01.001

    Article  CAS  Google Scholar 

  105. Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS, Bai JZ (2006) Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res 1077(1):187–199. https://doi.org/10.1016/j.brainres.2006.01.016

    Article  CAS  Google Scholar 

  106. Meyer J, Gerkau NJ, Kafitz KW, Patting M, Jolmes F, Henneberger C, Rose CR (2021) Rapid fluorescence lifetime imaging reveals that TRPV4 channels promote dysregulation of neuronal Na(+) in ischemia. J Neurosci Off J Soc Neurosci. https://doi.org/10.1523/JNEUROSCI.0819-21.2021

    Article  Google Scholar 

  107. Jie P, Lu Z, Hong Z, Li L, Zhou L, Li Y, Zhou R, Zhou Y et al (2016) Activation of transient receptor potential vanilloid 4 is involved in neuronal injury in middle cerebral artery occlusion in mice. Mol Neurobiol 53(1):8–17. https://doi.org/10.1007/s12035-014-8992-2

    Article  CAS  Google Scholar 

  108. Jie P, Hong Z, Tian Y, Li Y, Lin L, Zhou L, Du Y, Chen L et al (2015) Activation of transient receptor potential vanilloid 4 induces apoptosis in hippocampus through downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways. Cell Death Dis 6:e1775. https://doi.org/10.1038/cddis.2015.146

    Article  CAS  Google Scholar 

  109. Chen CK, Hsu PY, Wang TM, Miao ZF, Lin RT, Juo SH (2018) TRPV4 Activation contributes functional recovery from ischemic stroke via angiogenesis and neurogenesis. Mol Neurobiol 55(5):4127–4135. https://doi.org/10.1007/s12035-017-0625-0

    Article  CAS  Google Scholar 

  110. Bai JZ, Lipski J (2014) Involvement of TRPV4 channels in Abeta(40)-induced hippocampal cell death and astrocytic Ca(2+) signalling. Neurotoxicology 41:64–72. https://doi.org/10.1016/j.neuro.2014.01.001

    Article  CAS  Google Scholar 

  111. Liu M, Liu X, Wang L, Wang Y, Dong F, Wu J, Qu X, Liu Y et al (2018) TRPV4 inhibition improved myelination and reduced glia reactivity and inflammation in a cuprizone-induced mouse model of demyelination. Front Cell Neurosci 12:392. https://doi.org/10.3389/fncel.2018.00392

    Article  CAS  Google Scholar 

  112. Liu Y, Fan H, Li X, Liu J, Qu X, Wu X, Liu M, Liu Z et al (2021) Trpv4 regulates Nlrp3 inflammasome via SIRT1/PGC-1alpha pathway in a cuprizone-induced mouse model of demyelination. Exp Neurol 337:113593. https://doi.org/10.1016/j.expneurol.2020.113593

    Article  CAS  Google Scholar 

  113. Liu N, Bai L, Lu Z, Gu R, Zhao D, Yan F, Bai J (2022) TRPV4 contributes to ER stress and inflammation: implications for Parkinson’s disease. J Neuroinflammation 19(1):26. https://doi.org/10.1186/s12974-022-02382-5

    Article  CAS  Google Scholar 

  114. Lee JC, Joo KM, Choe SY, Cha CI (2012) Region-specific changes in the immunoreactivity of TRPV4 expression in the central nervous system of SOD1(G93A) transgenic mice as an in vivo model of amyotrophic lateral sclerosis. J Mol Histol 43(6):625–631. https://doi.org/10.1007/s10735-012-9432-0

    Article  CAS  Google Scholar 

  115. Fleming J, Quan D (2016) A case of congenital spinal muscular atrophy with pain due to a mutation in TRPV4. Neuromuscul Disord 26(12):841–843. https://doi.org/10.1016/j.nmd.2016.09.013

    Article  Google Scholar 

  116. Juntas Morales R, Pageot N, Taieb G, Camu W (2017) Adult-onset spinal muscular atrophy: an update. Rev Neurol (Paris) 173(5):308–319. https://doi.org/10.1016/j.neurol.2017.03.015

    Article  CAS  Google Scholar 

  117. Auer-Grumbach M, Olschewski A, Papic L, Kremer H, McEntagart ME, Uhrig S, Fischer C, Frohlich E et al (2010) Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 42(2):160–164. https://doi.org/10.1038/ng.508

    Article  CAS  Google Scholar 

  118. Fiorillo C, Moro F, Brisca G, Astrea G, Nesti C, Balint Z, Olschewski A, Meschini MC et al (2012) TRPV4 mutations in children with congenital distal spinal muscular atrophy. Neurogenetics 13(3):195–203. https://doi.org/10.1007/s10048-012-0328-7

    Article  CAS  Google Scholar 

  119. Fernandez-Ramos JA, Lopez-Laso E, Camino-Leon R, Gascon-Jimenez FJ, Jimenez-Gonzalez MD (2015) Experience in molecular diagnostic in hereditary neuropathies in a pediatric tertiary hospital. Rev Neurol 61(11):490–498. https://doi.org/10.33588/rn.6111.2015275

    Article  Google Scholar 

  120. Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA et al (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42(2):170–174. https://doi.org/10.1038/ng.512

    Article  CAS  Google Scholar 

  121. Biasini F, Portaro S, Mazzeo A, Vita G, Fabrizi GM, Taioli F, Toscano A, Rodolico C (2016) TRPV4 related scapuloperoneal spinal muscular atrophy: report of an Italian family and review of the literature. Neuromuscul Disord 26(4–5):312–315. https://doi.org/10.1016/j.nmd.2016.02.010

    Article  CAS  Google Scholar 

  122. Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, Yau HJ, Yang Y et al (2010) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42(2):165–169. https://doi.org/10.1038/ng.509

    Article  CAS  Google Scholar 

  123. Fiorio Pla A, Gkika D (2013) Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis. Front Physiol 4:311. https://doi.org/10.3389/fphys.2013.00311

    Article  Google Scholar 

  124. Huang T, Xu T, Wang Y, Zhou Y, Yu D, Wang Z, He L, Chen Z et al (2021) Cannabidiol inhibits human glioma by induction of lethal mitophagy through activating TRPV4. Autophagy 17(11):3592–3606. https://doi.org/10.1080/15548627.2021.1885203

    Article  CAS  Google Scholar 

  125. Ou-Yang Q, Li B, Xu M, Liang H (2018) TRPV4 promotes the migration and invasion of glioma cells via AKT/Rac1 signaling. Biochem Biophys Res Commun 503(2):876–881. https://doi.org/10.1016/j.bbrc.2018.06.090

    Article  CAS  Google Scholar 

  126. Yang W, Wu PF, Ma JX, Liao MJ, Xu LS, Yi L (2020) TRPV4 activates the Cdc42/N-wasp pathway to promote glioblastoma invasion by altering cellular protrusions. Sci Rep 10(1):14151. https://doi.org/10.1038/s41598-020-70822-4

    Article  CAS  Google Scholar 

  127. Goutsou S, Tsakona C, Polia A, Moutafidi A, Zolota V, Gatzounis G, Assimakopoulou M (2019) Transient receptor potential vanilloid (TRPV) channel expression in meningiomas: prognostic and predictive significance. Virchows Arch Int J Pathol 475(1):105–114. https://doi.org/10.1007/s00428-019-02584-y

    Article  CAS  Google Scholar 

  128. Huang R, Wang F, Yang Y, Ma W, Lin Z, Cheng N, Long Y, Deng S et al (2019) Recurrent activations of transient receptor potential vanilloid-1 and vanilloid-4 promote cellular proliferation and migration in esophageal squamous cell carcinoma cells. FEBS Open Bio 9(2):206–225. https://doi.org/10.1002/2211-5463.12570

    Article  CAS  Google Scholar 

  129. Yu S, Huang S, Ding Y, Wang W, Wang A, Lu Y (2019) Transient receptor potential ion-channel subfamily V member 4: a potential target for cancer treatment. Cell Death Dis 10(7):497. https://doi.org/10.1038/s41419-019-1708-9

    Article  Google Scholar 

  130. Espadas-Alvarez H, Martinez-Rendon J, Larre I, Matamoros-Volante A, Romero-Garcia T, Rosenbaum T, Rueda A, Garcia-Villegas R (2021) TRPV4 activity regulates nuclear Ca(2+) and transcriptional functions of beta-catenin in a renal epithelial cell model. J Cell Physiol 236(5):3599–3614. https://doi.org/10.1002/jcp.30096

    Article  CAS  Google Scholar 

  131. Zhao Y, Wang J, Liu X (2021) TRPV4 induces apoptosis via p38 MAPK in human lung cancer cells. Braz J Med Biol Res = Rev Bras Pesquisas Med Biol 54(12):10867. https://doi.org/10.1590/1414-431X2021e10867

    Article  Google Scholar 

  132. Chinigo G, Fiorio Pla A, Gkika D (2020) TRP channels and small gtpases interplay in the main hallmarks of metastatic cancer. Front Pharmacol 11:581455. https://doi.org/10.3389/fphar.2020.581455

    Article  CAS  Google Scholar 

  133. Faropoulos K, Polia A, Tsakona C, Pitaraki E, Moutafidi A, Gatzounis G, Assimakopoulou M (2021) Evaluation of AQP4/TRPV4 channel co-expression, microvessel density, and its association with peritumoral brain edema in intracranial meningiomas. J Mol Neurosci: MN 71(9):1786–1795. https://doi.org/10.1007/s12031-021-01801-1

    Article  CAS  Google Scholar 

  134. Fujii S, Tajiri Y, Hasegawa K, Matsumoto S, Yoshimoto RU, Wada H, Kishida S, Kido MA et al (2020) The TRPV4-AKT axis promotes oral squamous cell carcinoma cell proliferation via CaMKII activation. Lab Invest J Tech Meth Pathol 100(2):311–323. https://doi.org/10.1038/s41374-019-0357-z

    Article  CAS  Google Scholar 

  135. Zheng J, Liu F, Du S, Li M, Wu T, Tan X, Cheng W (2019) Mechanism for regulation of melanoma cell death via activation of thermo-TRPV4 and TRPV2. J Oncol 2019:7362875. https://doi.org/10.1155/2019/7362875

    Article  CAS  Google Scholar 

  136. Xu B, Xing R, Huang Z, Yin S, Li X, Zhang L, Ding L, Wang P (2019) Excessive mechanical stress induces chondrocyte apoptosis through TRPV4 in an anterior cruciate ligament-transected rat osteoarthritis model. Life Sci 228:158–166. https://doi.org/10.1016/j.lfs.2019.05.003

    Article  CAS  Google Scholar 

  137. Massague J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529(7586):298–306. https://doi.org/10.1038/nature17038

    Article  CAS  Google Scholar 

  138. Roche J (2018) Erratum: Roche, J. The epithelial-to-mesenchymal transition in cancer. Cancers, 2018, 10, 52. Cancers 10(3):79. https://doi.org/10.3390/cancers10030079

  139. Brabletz T, Kalluri R, Nieto MA, Weinberg RA (2018) EMT in cancer. Nature reviews. Cancer 18(2):128–134. https://doi.org/10.1038/nrc.2017.118

    Article  CAS  Google Scholar 

  140. Zhang P, Xu J, Zhang H, Liu XY (2021) Identification of TRPV4 as a novel target in invasiveness of colorectal cancer. BMC Cancer 21(1):1264. https://doi.org/10.1186/s12885-021-08970-7

    Article  CAS  Google Scholar 

  141. Lu Z, Ghosh S, Wang Z, Hunter T (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 4(6):499–515. https://doi.org/10.1016/s1535-6108(03)00304-0

    Article  CAS  Google Scholar 

  142. Azimi I, Robitaille M, Armitage K, So CL, Milevskiy MJG, Northwood K, Lim HF, Thompson EW et al (2020) Activation of the ion channel TRPV4 induces epithelial to mesenchymal transition in breast cancer cells. Int J Mol Sci 21(24):9417. https://doi.org/10.3390/ijms21249417

  143. Xie R, Xu J, Xiao Y, Wu J, Wan H, Tang B, Liu J, Fan Y et al (2017) Calcium promotes human gastric cancer via a novel coupling of calcium-sensing receptor and TRPV4 channel. Can Res 77(23):6499–6512. https://doi.org/10.1158/0008-5472.CAN-17-0360

    Article  CAS  Google Scholar 

  144. Sharma S, Goswami R, Zhang DX, Rahaman SO (2019) TRPV4 regulates matrix stiffness and TGFbeta1-induced epithelial-mesenchymal transition. J Cell Mol Med 23(2):761–774. https://doi.org/10.1111/jcmm.13972

    Article  CAS  Google Scholar 

  145. Michaelis UR (2014) Mechanisms of endothelial cell migration. Cell Mol Life Sci: CMLS 71(21):4131–4148. https://doi.org/10.1007/s00018-014-1678-0

    Article  CAS  Google Scholar 

  146. Fiorio Pla A, Ong HL, Cheng KT, Brossa A, Bussolati B, Lockwich T, Paria B, Munaron L et al (2012) TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling. Oncogene 31(2):200–212. https://doi.org/10.1038/onc.2011.231

    Article  CAS  Google Scholar 

  147. Li X, Cheng Y, Wang Z, Zhou J, Jia Y, He X, Zhao L, Dong Y et al (2020) Calcium and TRPV4 promote metastasis by regulating cytoskeleton through the RhoA/ROCK1 pathway in endometrial cancer. Cell Death Dis 11(11):1009. https://doi.org/10.1038/s41419-020-03181-7

    Article  CAS  Google Scholar 

  148. Thoppil RJ, Cappelli HC, Adapala RK, Kanugula AK, Paruchuri S, Thodeti CK (2016) TRPV4 channels regulate tumor angiogenesis via modulation of Rho/Rho kinase pathway. Oncotarget 18:25849–25861. https://doi.org/10.18632/oncotarget.8405

    Article  Google Scholar 

  149. Kanugula AK, Adapala RK, Jamaiyar A, Lenkey N, Guarino BD, Liedtke W, Yin L, Paruchuri S et al (2021) Endothelial TRPV4 channels prevent tumor growth and metastasis via modulation of tumor angiogenesis and vascular integrity. Angiogenesis 24(3):647–656. https://doi.org/10.1007/s10456-021-09775-9

    Article  CAS  Google Scholar 

  150. Cappelli HC, Kanugula AK, Adapala RK, Amin V, Sharma P, Midha P, Paruchuri S, Thodeti CK (2019) Mechanosensitive TRPV4 channels stabilize VE-cadherin junctions to regulate tumor vascular integrity and metastasis. Cancer Lett 442:15–20. https://doi.org/10.1016/j.canlet.2018.07.042

    Article  CAS  Google Scholar 

  151. Guarino BD, Adapala RK, Kanugula AK, Lenkey NM, Dougherty JA, Paruchuri S, Khan M, Thodeti CK (2019) Extracellular vesicles from pathological microenvironment induce endothelial cell transformation and abnormal angiogenesis via modulation of TRPV4 channels. Front Cell Dev Biol 7:344. https://doi.org/10.3389/fcell.2019.00344

    Article  Google Scholar 

  152. Scheraga RG, Abraham S, Niese KA, Southern BD, Grove LM, Hite RD, McDonald C, Hamilton TA et al (2016) TRPV4 mechanosensitive ion channel regulates lipopolysaccharide-stimulated macrophage phagocytosis. J Immunol 196(1):428–436. https://doi.org/10.4049/jimmunol.1501688

    Article  CAS  Google Scholar 

  153. Ribas A (2015) Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov 5(9):915–919. https://doi.org/10.1158/2159-8290.CD-15-0563

    Article  CAS  Google Scholar 

  154. Borsig L, Wolf MJ, Roblek M, Lorentzen A, Heikenwalder M (2014) Inflammatory chemokines and metastasis–tracing the accessory. Oncogene 33(25):3217–3224. https://doi.org/10.1038/onc.2013.272

    Article  CAS  Google Scholar 

  155. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 10:282. https://doi.org/10.3389/fneur.2019.00282

    Article  Google Scholar 

  156. Szarka N, Pabbidi MR, Amrein K, Czeiter E, Berta G, Pohoczky K, Helyes Z, Ungvari Z et al (2018) Traumatic brain injury impairs myogenic constriction of cerebral arteries: role of mitochondria-derived H2O2 and TRPV4-dependent activation of BKca channels. J Neurotrauma 35(7):930–939. https://doi.org/10.1089/neu.2017.5056

    Article  Google Scholar 

  157. Oyinbo CA (2011) Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp 71(2):281–299

    Google Scholar 

  158. Lu KT, Huang TC, Tsai YH, Yang YL (2017) Transient receptor potential vanilloid type 4 channels mediate Na-K-Cl-co-transporter-induced brain edema after traumatic brain injury. J Neurochem 140(5):718–727. https://doi.org/10.1111/jnc.13920

    Article  CAS  Google Scholar 

  159. Michinaga S, Onishi K, Shimizu K, Mizuguchi H, Hishinuma S (2021) Pharmacological inhibition of transient receptor potential vanilloid 4 reduces vasogenic edema after traumatic brain injury in mice. Biol Pharm Bull 44(11):1759–1766. https://doi.org/10.1248/bpb.b21-00512

    Article  CAS  Google Scholar 

  160. Toth P, Tucsek Z, Sosnowska D, Gautam T, Mitschelen M, Tarantini S, Deak F, Koller A et al (2013) Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 33(11):1732–1742. https://doi.org/10.1038/jcbfm.2013.143

    Article  CAS  Google Scholar 

  161. Wang L, Ma S, Hu Z, McGuire TF, Xie XQ (2019) Chemogenomics systems pharmacology mapping of potential drug targets for treatment of traumatic brain injury. J Neurotrauma 36(4):565–575. https://doi.org/10.1089/neu.2018.5757

    Article  Google Scholar 

  162. Feng Z, Min L, Liang L, Chen B, Chen H, Zhou Y, Deng W, Liu H et al (2021) Neutrophil extracellular traps exacerbate secondary injury via promoting neuroinflammation and blood-spinal cord barrier disruption in spinal cord injury. Front Immunol 12:698249. https://doi.org/10.3389/fimmu.2021.698249

    Article  CAS  Google Scholar 

  163. Kumar H, Lim CS, Choi H, Joshi HP, Kim KT, Kim YH, Park CK, Kim HM et al (2020) Elevated TRPV4 levels contribute to endothelial damage and scarring in experimental spinal cord injury. J Neurosci: Off J Soc Neurosci 40(9):1943–1955. https://doi.org/10.1523/JNEUROSCI.2035-19.2020

    Article  CAS  Google Scholar 

  164. Brooks CA, Barton LS, Behm DJ, Brnardic EJ, Costell MH, Holt DA, Jolivette LJ, Matthews JM et al (2019) Discovery of GSK3527497: A candidate for the inhibition of transient receptor potential vanilloid-4 (TRPV4). J Med Chem 62(20):9270–9280. https://doi.org/10.1021/acs.jmedchem.9b01247

    Article  CAS  Google Scholar 

  165. Cheung M, Bao W, Behm DJ, Brooks CA, Bury MJ, Dowdell SE, Eidam HS, Fox RM et al (2017) Discovery of GSK2193874: an orally active, potent, and selective blocker of transient receptor potential vanilloid 4. ACS Med Chem Lett 8(5):549–554. https://doi.org/10.1021/acsmedchemlett.7b00094

    Article  CAS  Google Scholar 

  166. Thorneloe KS, Cheung M, Bao W, Alsaid H, Lenhard S, Jian MY, Costell M, Maniscalco-Hauk K et al (2012) An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Trans Med 4(159):159ra148. https://doi.org/10.1126/scitranslmed.3004276

    Article  CAS  Google Scholar 

  167. Goyal N, Skrdla P, Schroyer R, Kumar S, Fernando D, Oughton A, Norton N, Sprecher DL et al (2019) Clinical pharmacokinetics, safety, and tolerability of a novel, first-in-class TRPV4 ion channel inhibitor, GSK2798745, in healthy and heart failure subjects. Am J Cardiovasc Drugs: Drugs Devices Other Interv 19(3):335–342. https://doi.org/10.1007/s40256-018-00320-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate Xiang-lei Jia and Xue-lei Cheng for their valuable comments.

Funding

This research is supported by the Natural Science Foundation of China (Grant No. 82171452, No. 82060588), the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University (Grant No. ZNLH201909), the Medical Science Advancement Program of Wuhan University (No. TFJC2018001, TFLC2018001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Meng-liu Zeng, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bi-wen Peng.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Ml., Kong, S., Chen, Tx. et al. Transient Receptor Potential Vanilloid 4: a Double-Edged Sword in the Central Nervous System. Mol Neurobiol 60, 1232–1249 (2023). https://doi.org/10.1007/s12035-022-03141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03141-6

Keywords

Navigation