Skip to main content

Advertisement

Log in

Activation of Transient Receptor Potential Vanilloid 4 is Involved in Neuronal Injury in Middle Cerebral Artery Occlusion in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Transient receptor potential vanilloid 4 (TRPV4) is widely expressed in the central nervous system and can be activated by multiple stimuli during cerebral ischemia. Recently, we reported that intracerebroventricular (icv.) injection of HC-067047, a specific TRPV4 antagonist, reduced brain infarction following 60-min of middle cerebral artery occlusion (MCAO). This study was undertaken to investigate the molecular mechanisms underlying TRPV4-mediated neuronal injury in cerebral ischemia. We demonstrated that TRPV4 expression was upregulated in the ipsilateral hippocampus at 4 to 48 h post-MCAO, peaking at 18 h post-MCAO. Treatment with TRPV4 antagonists (HC-067047 and ruthenium red) dose-dependently reduced brain infarction at 24 h post-MCAO. Phosphorylation of protein kinase B (p-Akt) was downregulated and that of extracellular signal-related kinase (p-ERK) was upregulated at 8 to 24 h post-MCAO, which was markedly blocked by treatment with HC-067047. Icv. injection of GSK1016790A (a TRPV4 agonist), dose-dependently induced hippocampal neuronal death, accompanied by an increase in phosphorylation of the NR2B subunit of the N-methyl-d-aspartate receptor (NMDAR). In addition, the level of p-Akt was decreased and that of p-ERK was increased by GSK1016790A-injection, which was sensitive to an NR2B antagonist. The neuronal toxicity of GSK1016790A was blocked by treatment with an NR2B antagonist and a phosphatidylinositol-3-kinase (PI3K) agonist but not by administration of a MAPK/ERK kinase antagonist. We conclude that the activation of TRPV4 is upregulated and involved in neuronal injury during cerebral ischemia and that the neurotoxicity associated with TRPV4-activation is mediated through NR2B-NMDAR and the related downregulation of the Akt signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nilius B, Szallasi A (2014) Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 66(3):676–814. doi:10.1124/pr.113.008268

    Article  PubMed  Google Scholar 

  2. Nilius B, Voets T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14(2):152–163. doi:10.1038/embor.2012.219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vincent F, Duncton MA (2011) TRPV4 agonists and antagonists. Curr Top Med Chem 11(17):2216–2226

    Article  CAS  PubMed  Google Scholar 

  4. Moran MM, McAlexander MA, Bíró T, Szallasi A (2011) Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 10(8):601–620. doi:10.1038/nrd3456

    Article  CAS  PubMed  Google Scholar 

  5. Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V (2007) Brain edema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol 6(3):258–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS, Bai JZ (2006) Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res 1077(1):187–199

    Article  CAS  PubMed  Google Scholar 

  7. Bai JZ, Lipski J (2010) Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology 31(2):204–214. doi:10.1016/j.neuro.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  8. Li L, Qu W, Zhou L, Lu Z, Jie P, Chen L, Chen L (2013) Activation of transient receptor potential vanilloid 4 increases NMDA-activated current in hippocampal pyramidal neurons. Front Cell Neurosci 7:17–26. doi:10.3389/fncel.2013.00017

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, Ferroni S, Anderova M (2012) The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One 7(6):e39959. doi:10.1371/journal.pone.0039959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ryskamp DA, Witkovsky P, Barabas P, Huang W, Koehler C, Akimov NP, Lee SH, Chauhan S, Xing W, Rentería RC, Liedtke W, Krizaj D (2011) The polymodal ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells. J Neurosci 31(19):7089–7101. doi:10.1523/JNEUROSCI. 0359-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paschen W (1996) Glutamate excitotoxicity in transient global cerebral ischemia. Acta Neurobiol Exp (Wars) 56(1):313–322

    CAS  Google Scholar 

  12. Hetman M, Kharebava G (2006) Survival signaling pathways activated by NMDA receptors. Curr Top Med Chem 6(8):787–799

    Article  CAS  PubMed  Google Scholar 

  13. Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y, Medina I (2006) Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J Physiol 572(Pt3):789–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Waxman EA, Lynch DR (2005) N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist 11(1):37–49

    Article  CAS  PubMed  Google Scholar 

  15. Ye L, Kleiner S, Wu J, Sah R, Gupta RK, Banks AS, Cohen P, Khandekar MJ, Boström P, Mepani RJ, Laznik D, Kamenecka TM, Song X, Liedtke W, Mootha VK, Puigserver P, Griffin PR, Clapham DE, Spiegelman BM (2012) TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151(1):96–110. doi:10.1016/j.cell.2012.08.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE (2009) TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104(9):1123–1130. doi:10.1161/CIRCRESAHA.108.192930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gradilone SA, Masyuk TV, Huang BQ, Banales JM, Lehmann GL, Radtke BN, Stroope A, Masyuk AI, Splinter PL, LaRusso NF (2010) Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology 139(1):304–314.e2. doi:10.1053/j.gastro.2010.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang R, Chen L, Wang H, Xu B, Tomimoto H, Chen L (2012) Anti-amnesic effect of neurosteroid PREGS in Aβ25–35-injected mice through σ1 receptor- anda7nAChR-mediated neuroprotection. Neuropharmacology 63(6):1042–1050. doi:10.1016/j.neuropharm.2012.07.035

    Article  CAS  PubMed  Google Scholar 

  19. Williams EJ, Doherty P (1999) Evidence for and against a pivotal role of PI3-kinase in a neuronal cell survival pathway. Mol Cell Neurosci 13(4):272–280

    Article  CAS  PubMed  Google Scholar 

  20. Howland JG, Cazakoff BN (2010) Effects of acute stress and GluN2B-containing NMDA receptor antagonism on object and object-place recognition memory. Neurobiol Learn Mem 93(2):261–267. doi:10.1016/j.nlm.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  21. Mulcahy NJ, Ross J, Rothwell NJ, Loddick SA (2003) Delayed administration of interleukin-1 receptor antagonist protects against transient cerebral ischemia in the rat. Br J Pharmacol 140(3):471–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cai W, Zhu Y, Furuya K, Li Z, Sokabe M, Chen L (2008) Two different molecular mechanisms underlying progesterone neuroprotection against ischemic brain damage. Neuropharmacology 55(2):127–138. doi:10.1016/j.neuropharm.2008.04.023

    Article  CAS  PubMed  Google Scholar 

  23. Shibasaki K, Suzuki M, Mizuno A, Tominaga M (2007) Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci 27(7):1566–1575

    Article  CAS  PubMed  Google Scholar 

  24. Zhao H, Sapolsky RM, Steinberg GK (2006) Phosphoinositide-3-kinase/Akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol 34(3):249–270

    Article  CAS  PubMed  Google Scholar 

  25. Sawe N, Steinberg G, Zhao H (2008) Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res 86(8):1659–1669. doi:10.1002/jnr.21604

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J, Tymianski M, Craig AM, Wang YT (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27(11):2846–2857

    Article  CAS  PubMed  Google Scholar 

  27. Cao DS, Yu SQ, Premkumar LS (2009) Modulation of transient receptor potential vanilloid 4-mediated membrane currents and synaptic transmission by protein kinase C. Mol Pain 5:5–17. doi:10.1186/1744-8069-5-5

    PubMed  PubMed Central  Google Scholar 

  28. Li L, Yin J, Jie PH, Lu ZH, Zhou LB, Chen L, Chen L (2013) Transient receptor potential vanilloid 4 mediates hypotonicity-induced enhancement of synaptic transmission in hippocampal slices. CNS Neurosci Ther 19(11):854–862. doi:10.1111/cns.12143

    Article  CAS  PubMed  Google Scholar 

  29. Noshita N, Lewen A, Sugawara T, Chan PH (2001) Evidence of phosphorylation of Akt and neuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 21(12):1442–1450

    Article  CAS  PubMed  Google Scholar 

  30. Luo HR, Hattori H, Hossain MA, Hester L, Huang Y, Lee-Kwon W, Donowitz M, Nagata E, Snyder SH (2003) Akt as a mediator of cell death. Proc Natl Acad Sci U S A. 100(20):11712–11717

  31. Li F, Omori N, Jin G, Wang SJ, Sato K, Nagano I, Shoji M, Abe K (2003) Cooperative expression of survival p-ERK and p-Akt signals in rat brain neurons after transient MCAO. Brain Res 962(1–2):21–26

  32. Shi M, Du F, Liu Y, Li L, Cai J, Zhang GF, Xu XF, Lin T, Cheng HR, Liu XD, Xiong LZ, Zhao G (2013) Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment. Acta Neuropathol 126(5):725–739. doi:10.1007/s00401-013-1166-x

  33. Bai JZ, Lipski J (2014) Involvement of TRPV4 channels in Aβ(40)-induced hippocampal cell death and astrocytic Ca(2+) signaling. Neurotoxicology 41:64–72. doi:10.1016/j.neuro.2014.01.001

  34. Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kotlikoff MI, Heppner TJ, Hill-Eubanks DC, Nelson MT (2012) Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336(6081):597–5601. doi:10.1126/science.1216283

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (31271206), Research Award Fund for Outstanding Young Teachers in Nanjing Medical University (JX2161015033), and Fonds de recherche Santé-National Natural Science Foundation of China Collaboration (812111370).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen.

Additional information

Pinghui Jie and Zihong Lu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jie, P., Lu, Z., Hong, Z. et al. Activation of Transient Receptor Potential Vanilloid 4 is Involved in Neuronal Injury in Middle Cerebral Artery Occlusion in Mice. Mol Neurobiol 53, 8–17 (2016). https://doi.org/10.1007/s12035-014-8992-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8992-2

Keywords

Navigation