Skip to main content
Log in

Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Vibroacoustic disease, a progressive and systemic disease, mainly involving the central nervous system, is caused by excessive exposure to low-frequency but high-intensity noise generated by various heavy transportations and machineries. Infrasound is a type of low-frequency noise. Our previous studies demonstrated that infrasound at a certain intensity caused neuronal injury in rats but the underlying mechanism(s) is still largely unknown. Here, we showed that glial cell-expressed TRPV4, a Ca2+-permeable mechanosensitive channel, mediated infrasound-induced neuronal injury. Among different frequencies and intensities, infrasound at 16 Hz and 130 dB impaired rat learning and memory abilities most severely after 7–14 days exposure, a time during which a prominent loss of hippocampal CA1 neurons was evident. Infrasound also induced significant astrocytic and microglial activation in hippocampal regions following 1- to 7-day exposure, prior to neuronal apoptosis. Moreover, pharmacological inhibition of glial activation in vivo protected against neuronal apoptosis. In vitro, activated glial cell-released proinflammatory cytokines IL-1β and TNF-α were found to be key factors for this neuronal apoptosis. Importantly, infrasound induced an increase in the expression level of TRPV4 both in vivo and in vitro. Knockdown of TRPV4 expression by siRNA or pharmacological inhibition of TRPV4 in cultured glial cells decreased the levels of IL-1β and TNF-α, attenuated neuronal apoptosis, and reduced TRPV4-mediated Ca2+ influx and NF-κB nuclear translocation. Finally, using various antagonists we revealed that calmodulin and protein kinase C signaling pathways were involved in TRPV4-triggered NF-κB activation. Thus, our results provide the first evidence that glial cell-expressed TRPV4 is a potential key factor responsible for infrasound-induced neuronal impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adapala RK, Talasila PK, Bratz IN, Zhang DX, Suzuki M, Meszaros JG, Thodeti CK (2011) PKCalpha mediates acetylcholine-induced activation of TRPV4-dependent calcium influx in endothelial cells. Am J Physiol Heart Circ Physiol 301:H757–H765

    Article  CAS  PubMed  Google Scholar 

  2. Alessandri-Haber N, Dina OA, Joseph EK, Reichling DB, Levine JD (2008) Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J Neurosci 28:1046–1057

    Article  CAS  PubMed  Google Scholar 

  3. Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, Levine JD (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39:497–511

    Article  CAS  PubMed  Google Scholar 

  4. Alves-Pereira M, Castelo Branco NA (2007) Vibroacoustic disease: biological effects of infrasound and low-frequency noise explained by mechanotransduction cellular signalling. Prog Biophys Mol Biol 93:256–279

    Article  PubMed  Google Scholar 

  5. Andrade YN, Fernandes J, Vazquez E, Fernandez-Fernandez JM, Arniges M, Sanchez TM, Villalon M, Valverde MA (2005) TRPV4 channel is involved in the coupling of fluid viscosity changes to epithelial ciliary activity. J Cell Biol 168:869–874

    Article  CAS  PubMed  Google Scholar 

  6. Arabadzhi VI (1992) Infrasound and biorhythms of the human brain. Biofizika 37:150–151

    CAS  PubMed  Google Scholar 

  7. Arnadottir J, Chalfie M (2010) Eukaryotic mechanosensitive channels. Annu Rev Biophys 39:111–137

    Article  CAS  PubMed  Google Scholar 

  8. Backteman O, Kohler J, Sjoberg L (1984) Infrasound-tutorial and review: part 4. J Low Freq Noise Vib 3:28–67

    Google Scholar 

  9. Becker D, Bereiter-Hahn J, Jendrach M (2009) Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation. Eur J Cell Biol 88:141–152

    Article  CAS  PubMed  Google Scholar 

  10. Bedard AJ, Georges TM (2000) Atmospheric infrasound. Phys Today 53:32–37

    Article  Google Scholar 

  11. Benfenati V, Amiry-Moghaddam M, Caprini M, Mylonakou MN, Rapisarda C, Ottersen OP, Ferroni S (2007) Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience 148:876–892

    Article  CAS  PubMed  Google Scholar 

  12. Branco NA, Alves-Pereira M (2004) Vibroacoustic disease. Noise Health 6:3–20

    PubMed  Google Scholar 

  13. Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, Ferroni S, Anderova M (2012) The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One 7:e39959

    Article  CAS  PubMed  Google Scholar 

  14. Castelo-Branco N, Alves-Pereira M (2004) Vibroacoustic disease. Noise Health 6:3–20

    Google Scholar 

  15. Castelo Branco NA, Rodriguez E (1999) The vibroacoustic disease—an emerging pathology. Aviat Space Environ Med 70:A1–A6

    CAS  PubMed  Google Scholar 

  16. Cheng H, Wang B, Tang C, Feng G, Zhang C, Li L, Lin T, Du F, Duan H, Shi M, Zhao G (2012) Infrasonic noise induces axonal degeneration of cultured neurons via a Ca(2)(+) influx pathway. Toxicol Lett 212:190–197

    Article  CAS  PubMed  Google Scholar 

  17. Clementi E, Meldolesi J (1996) Pharmacological and functional properties of voltage-independent Ca2+ channels. Cell Calcium 19:269–279

    Article  CAS  PubMed  Google Scholar 

  18. Dixit V, Mak TW (2002) NF-kappaB signaling. Many roads lead to madrid. Cell 111:615–619

    Article  CAS  PubMed  Google Scholar 

  19. Du F, Yin L, Shi M, Cheng H, Xu X, Liu Z, Zhang G, Wu Z, Feng G, Zhao G (2010) Involvement of microglial cells in infrasonic noise-induced stress via upregulated expression of corticotrophin releasing hormone type 1 receptor. Neuroscience 167:909–919

    Article  CAS  PubMed  Google Scholar 

  20. Feldmann J, Pitten FA (2004) Effects of low frequency noise on man—a case study. Noise Health 7:23–28

    CAS  PubMed  Google Scholar 

  21. Fernandes J, Lorenzo IM, Andrade YN, Garcia-Elias A, Serra SA, Fernandez-Fernandez JM, Valverde MA (2008) IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5′-6′-epoxyeicosatrienoic acid. J Cell Biol 181:143–155

    Article  CAS  PubMed  Google Scholar 

  22. Gao X, Wu L, O’Neil RG (2003) Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 278:27129–27137

    Article  CAS  PubMed  Google Scholar 

  23. Hdud IM, El-Shafei AA, Loughna P, Barrett-Jolley R, Mobasheri A (2012) Expression of transient receptor potential vanilloid (TRPV) channels in different passages of articular chondrocytes. Int J Mol Sci 13:4433–4445

    Article  CAS  PubMed  Google Scholar 

  24. Hedlin MA, Alcoverro B (2005) The use of impedance matching capillaries for reducing resonance in rosette infrasonic spatial filters. J Acoust Soc Am 117:1880–1888

    Article  PubMed  Google Scholar 

  25. Konno M, Shirakawa H, Iida S, Sakimoto S, Matsutani I, Miyake T, Kageyama K, Nakagawa T, Shibasaki K, Kaneko S (2012) Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia 60:761–770

    Article  PubMed  Google Scholar 

  26. Lamande SR, Yuan Y, Gresshoff IL, Rowley L, Belluoccio D, Kaluarachchi K, Little CB, Botzenhart E, Zerres K, Amor DJ, Cole WG, Savarirayan R, McIntyre P, Bateman JF (2011) Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat Genet 43:1142–1146

    Article  CAS  PubMed  Google Scholar 

  27. Landstrom U (1987) Laboratory and field studies on infrasound and its effects on humans. J Low Freq Noise Vib 6:29–33

    Google Scholar 

  28. Leventhall G (2007) What is infrasound? Prog Biophys Mol Biol 93:130–137

    Article  PubMed  Google Scholar 

  29. Levine JD, Alessandri-Haber N (2007) TRP channels: targets for the relief of pain. Biochim Biophys Acta 1772:989–1003

    Article  CAS  PubMed  Google Scholar 

  30. Li SW, Westwick J, Poll CT (2002) Receptor-operated Ca2+ influx channels in leukocytes: a therapeutic target? Trends Pharmacol Sci 23:63–70

    Article  CAS  PubMed  Google Scholar 

  31. Liedtke W (2006) Transient receptor potential vanilloid channels functioning in transduction of osmotic stimuli. J Endocrinol 191:515–523

    Article  CAS  PubMed  Google Scholar 

  32. Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    Article  CAS  PubMed  Google Scholar 

  33. Lilienbaum A, Israel A (2003) From calcium to NF-kappa B signaling pathways in neurons. Mol Cell Biol 23:2680–2698

    Article  CAS  PubMed  Google Scholar 

  34. Lin T, Liu Y, Shi M, Liu X, Li L, Zhao G (2012) Promotive effect of ginsenoside Rd on proliferation of neural stem cells in vivo and in vitro. J Ethnopharmacol 142:754–761

    Article  CAS  PubMed  Google Scholar 

  35. Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS, Bai JZ (2006) Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res 1077:187–199

    Article  CAS  PubMed  Google Scholar 

  36. Liu J, Lin T, Yan X, Jiang W, Shi M, Ye R, Rao Z, Zhao G (2010) Effects of infrasound on cell proliferation in the dentate gyrus of adult rats. Neuroreport 21:585–589

    Article  PubMed  Google Scholar 

  37. Liu Z, Gong L, Li X, Ye L, Wang B, Liu J, Qiu J, Jiao H, Zhang W, Chen J, Wang J (2012) Infrasound increases intracellular calcium concentration and induces apoptosis in hippocampi of adult rats. Mol Med Report 5:73–77

    CAS  Google Scholar 

  38. Liu ZH, Chen JZ, Tang Y, Chen D, Ding GR, LI J, Jin C, LI KC (2004) Effects of infrasound on changes of intracellular calcium ion concentration and on expression of RyRs in hippocampus of rat brain. J Low Freq Noise Vib 23:159–165

    Google Scholar 

  39. Liu ZH, Chen JZ, Ye L, Liu J, Qiu JY, Xu J, Lu R, Yuan XC, Zhang WD, Li XF, Li G (2010) Effects of infrasound at 8 Hz 90 dB/130 dB on NMDAR1 expression and changes in intracellular calcium ion concentration in the hippocampus of rats. Mol Med Report 3:917–921

    CAS  Google Scholar 

  40. Mochizuki T, Sokabe T, Araki I, Fujishita K, Shibasaki K, Uchida K, Naruse K, Koizumi S, Takeda M, Tominaga M (2009) The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem 284:21257–21264

    Article  CAS  PubMed  Google Scholar 

  41. Mohr GC, Cole JN, Guild E, Vongierke HE (1965) Effects of low frequency and infrasonic noise on man. Aerosp Med 36:817–824

    CAS  PubMed  Google Scholar 

  42. Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286:C195–C205

    Article  CAS  PubMed  Google Scholar 

  43. Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717

    Article  CAS  PubMed  Google Scholar 

  44. Shi M, Liu Z, Lv Y, Zheng M, Du F, Zhao G, Huang Y, Chen J, Han H, Ding Y (2011) Forced notch signaling inhibits commissural axon outgrowth in the developing chick central nerve system. PLoS One 6:e14570

    Article  CAS  PubMed  Google Scholar 

  45. Shibata K, Sugawara T, Fujishita K, Shinozaki Y, Matsukawa T, Suzuki T, Koizumi S (2011) The astrocyte-targeted therapy by Bushi for the neuropathic pain in mice. PLoS One 6:e23510

    Article  CAS  PubMed  Google Scholar 

  46. Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE (2009) TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104:1123–1130

    Article  CAS  PubMed  Google Scholar 

  47. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  CAS  PubMed  Google Scholar 

  48. Vennekens R, Owsianik G, Nilius B (2008) Vanilloid transient receptor potential cation channels: an overview. Curr Pharm Des 14:18–31

    Article  CAS  PubMed  Google Scholar 

  49. Xu F, Satoh E, Iijima T (2003) Protein kinase C-mediated Ca2+ entry in HEK 293 cells transiently expressing human TRPV4. Br J Pharmacol 140:413–421

    Article  CAS  PubMed  Google Scholar 

  50. Yamamoto M, Tamura A, Kirino T, Shimizu M, Sano K (1988) Behavioral changes after focal cerebral ischemia by left middle cerebral artery occlusion in rats. Brain Res 452:323–328

    Article  CAS  PubMed  Google Scholar 

  51. Yang F, Liu ZR, Chen J, Zhang SJ, Quan QY, Huang YG, Jiang W (2010) Roles of astrocytes and microglia in seizure-induced aberrant neurogenesis in the hippocampus of adult rats. J Neurosci Res 88:519–529

    Article  CAS  PubMed  Google Scholar 

  52. Yuan H, Long H, Liu J, Qu L, Chen J, Mou X (2009) Effects of infrasound on hippocampus-dependent learning and memory in rats and some underlying mechanisms. Environ Toxicol Pharmacol 28:243–247

    Article  CAS  PubMed  Google Scholar 

  53. Yuan H, Long H, Mu X, Liu J, Chen JD (2009) Effects of infrasound on the proliferation and the expression of BDNF in the hippocampus. J Low Freq Noise Vib 28:53–60

    Article  Google Scholar 

  54. Zhang C, Du F, Shi M, Ye R, Cheng H, Han J, Ma L, Cao R, Rao Z, Zhao G (2012) Ginsenoside Rd protects neurons against glutamate-induced excitotoxicity by inhibiting ca(2+) influx. Cell Mol Neurobiol 32:121–128

    Article  CAS  PubMed  Google Scholar 

  55. Zhang Y, Zhou L, Zhang X, Bai J, Shi M, Zhao G (2012) Ginsenoside-Rd attenuates TRPM7 and ASIC1a but promotes ASIC2a expression in rats after focal cerebral ischemia. Neurol Sci 33:1125–1131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Dongyun Feng and Ms. Rui Wu for technical support. This study was supported by grants from the National Natural Science Foundation of China (Grant Nos. 31170801 to M.S., 31070756 to F.D., and 81171236 to X.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Shi or Gang Zhao.

Additional information

M. Shi, F. Du, Y. Liu and L. Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2013_1166_MOESM1_ESM.tif

Supplementary Figure 1. Examination of efficiency and specificity of trpv4 siRNA. Western blot assay revealed that trpv4 siRNA #1 was efficient and specific after U87 cells were transfected with empty pSuper, trpv4 siRNA #1, trpv4 siRNA #2, or trpv4 scramble siRNA. β-Actin was used as an internal control. (TIFF 172 kb)

401_2013_1166_MOESM2_ESM.tif

Supplementary Figure 2. Infrasound does not affect microvascular endothelial cells in hippocampal CA1 region. (a-f) The changes of microvascular endothelial cells as indicated by CD31 immunohistochemistry in controls (a) and rats exposed to infrasound for 1 d (b), 3 d (c), 5 d (d), 7 d (e), or 14 d (f). (g, h) Quantitative analysis of the relative density of CD31 immunoreactivity (g) and the number of branch points of capillary blood vessels (h). Scale bar, 200 μm for a-f. (TIFF 4276 kb)

401_2013_1166_MOESM3_ESM.tif

Supplementary Figure 3. Infrasound activates microglia in vitro. Morphological changes of cultured microglia as revealed by OX42 immunostaining in controls (a, a’, f, f’) and infrasound-exposed cells at 0 h (b, b’, g, g’), 4 h (c, c’, h, h’), 12 h (d, d’, i, i’), or 24 h (e, e’, j, j’) following 1 h (a-e, a’-e’) or 2 h (f-j, f’-j’) exposure to infrasound. Panels (a’-j’) are the magnification views of the boxed areas of respective panels (a-j). Scale bars, 15 μm for a’-j’ insets; 50 μm for a-j. (TIFF 227 kb)

401_2013_1166_MOESM4_ESM.tif

Supplementary Figure 4. The expression levels of IL-1α (a), IL-6 (b), IL-18 (c), IL-10 (d), or INF-γ (e) in the supernatants collected from astrocytic and microglial cultures at 0 h, 4 h, 12 h or 24 h following 2 h exposure to infrasound. (TIFF 931 kb)

401_2013_1166_MOESM5_ESM.tif

Supplementary Figure 5. TRPV4 is expressed in the cultured cells. A low level and a relatively high level of TRPV4 (red) were present in Tuj1+ neurons (green, a-c) and OX42+ microglia (green, d-f) and GFAP+ astrocytes (green, g-i), respectively. Scale bar, 50 μm. (TIFF 3335 kb)

401_2013_1166_MOESM6_ESM.tif

Supplementary Figure 6. TRPV4 inhibition attenuates infrasound-induced neuronal injury. (a) TUNEL staining revealed that RN1734 decreased the number of apoptotic cells in the hippocampi of infrasound-exposed rats. Arrows in (a) indicate apoptotic cells. Scale bar, 200 μm. (b) Quantitative analysis of the number of TUNEL+ cells in hippocampal CA1 region. **p < 0.01, vs. the vehicle. (c, d) Representative fluorescence traces of cultured microglia showed that trpv4 siRNA-transfection (c) and RN1734 (d) markedly attenuated infrasound-induced increased [Ca2+]i. *p < 0.05. (e) Western blotting results showed that compared with the control (astrocytes without infrasound exposure), the expression levels of phosphorylated IκB and nuclear P65 were increased significantly in infrasound-exposed astrocytes treated with DMSO (vehicle), which can be attenuated by TRPV4 antagonist RN1734. (f) Quantitation of the expression levels of IκB, phosphorylated IκB and P65 as shown in (a). β-Actin and TFIIB were used as internal controls for cytosolic and nuclear proteins, respectively. *p < 0.05, vs. the control; #p < 0.05, vs. the vehicle. (TIFF 6564 kb)

401_2013_1166_MOESM7_ESM.tif

Supplementary Figure 7. The involvement of calmodulin, PKC and NF-κB in the production of IL-1β and TNF-α. Compared with vehicle (DMSO), calmodulin inhibitor CGS9343B, PKC inhibitor Ro318220 and NF-κB inhibitor Ro1069920 lowered the levels of IL-1β (a) and TNF-α (b) in astrocytic and microglial supernatants collected at 24 h after 2 h exposure to infrasound. The cells without infrasound exposure were used as the control. *p < 0.05, vs. astrocytic control; #p < 0.05, vs. microglial control. (TIFF 339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, M., Du, F., Liu, Y. et al. Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment. Acta Neuropathol 126, 725–739 (2013). https://doi.org/10.1007/s00401-013-1166-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1166-x

Keywords

Navigation