Skip to main content
Log in

Endoplasmic Reticulum Stress Instigates the Rotenone Induced Oxidative Apoptotic Neuronal Death: a Study in Rat Brain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The present study was conducted to evaluate the involvement of endoplasmic reticulum stress in rotenone-induced oxidative neuronal death in rat brain. Rotenone (6 μg/3 μl) was administered intranigrally, unilaterally (right side) in SD rat brain. Neuronal morphology, expression level of tyrosine hydroxylase (TH) and endoplasmic reticulum (ER) stress markers like glucose-regulated protein 78 (GRP78), growth arrest and DNA damage-inducible gene 153 (GADD153), eukaryotic translation initiation factor 2α (p-eIF2α/eIF2α) and cleaved caspase-12 were estimated in the rat brain. Levels of reactive oxygen species (ROS), reduced glutathione (GSH) and enzymatic activities of glutathione peroxidase (GPx) and glutathione reductase (GRd) were estimated to assess the rotenone induced oxidative stress. Apoptotic death of neurons was assessed by estimating the mRNA level of caspase-3. Rotenone administration caused altered neuronal morphology, decreased expression of TH, augmented ROS level, decreased level of GSH and decreased activities of GPx and GRd enzymes which were significantly attenuated with the pretreatment of ER stress inhibitor, salubrinal (1 mg/kg, intraperitoneal). Significantly increased levels of GRP78, GADD, dephosphorylated eIF2α and cleaved caspase-12 was also observed after rotenone administration, which was inhibited with the pretreatment of salubrinal. Rotenone-induced increased mRNA level of caspase-3 was also attenuated by pretreatment of salubrinal. Findings suggested that salubrinal treatment significantly inhibited the rotenone-induced neurotoxicity implicating that ER stress initiates the rotenone-induced oxidative stress and neuronal death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

GRP78:

Glucose-regulated protein 78

GADD153:

Growth arrest and DNA damage-inducible gene 153

eIF2α:

Eukaryotic translation initiation factor 2 subunit α

ROS:

Reactive oxygen species

HE:

Hematoxylin and eosin

CV:

Cresyl violet

STR:

Striatum

SN:

Substantia nigra

MB:

Midbrain

TH:

Tyrosine hydroxylase

IF:

Immunofluorescence

References

  1. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306

    Article  CAS  PubMed  Google Scholar 

  2. Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015

    CAS  PubMed  Google Scholar 

  3. Swarnkar S, Singh S, Mathur R, Patro IK, Nath C (2010) A study to correlate rotenone induced biochemical changes and cerebral damage in brain areas with neuromuscular coordination in rats. Toxicology 272:17–22

    Article  CAS  PubMed  Google Scholar 

  4. Fahn S, Cohen G (1992) The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it. Ann Neurol 32:804–812

    Article  CAS  PubMed  Google Scholar 

  5. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 3:S26–S36, discussion S36-38

    Article  Google Scholar 

  6. van Muiswinkel FL, de Vos RA, Bol JG, Andringa G, Jansen Steur EN, Ross D, Siegel D, Drukarch B (2004) Expression of NAD(P)H:quinone oxidoreductase in the normal and Parkinsonian substantia nigra. Neurobiol Aging 25:1253–1262

    Article  PubMed  Google Scholar 

  7. Uversky VN (2004) Neurotoxicant-induced animal models of Parkinson’s disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res 318:225–241

    Article  CAS  PubMed  Google Scholar 

  8. Swarnkar S, Singh S, Sharma S, Mathur R, Patro IK, Nath C (2011) Rotenone induced neurotoxicity in rat brain areas: a histopathological study. Neurosci Lett 501:123–127

    Article  CAS  PubMed  Google Scholar 

  9. Swarnkar S, Tyagi E, Agrawal R, Singh MP, Nath C (2009) A comparative study on oxidative stress induced by LPS and rotenone in homogenates of rat brain areas. Environ Toxicol Pharmacol 27:219–224

    Article  CAS  PubMed  Google Scholar 

  10. Swarnkar S, Goswami P, Kamat PK, Gupta S, Patro IK, Singh S, Nath C (2012) Rotenone induced apoptosis and role of calcium: a study on Neuro-2a cells. Arch Toxicol 86:1387–1397

    Article  CAS  PubMed  Google Scholar 

  11. Swarnkar S, Singh S, Goswami P, Mathur R, Patro IK, Nath C (2012) Astrocyte activation: a key step in rotenone induced cytotoxicity and DNA damage. Neurochem Res 37:2178–2189

    Article  CAS  PubMed  Google Scholar 

  12. Swarnkar S, Goswami P, Kamat PK, Patro IK, Singh S, Nath C (2013) Rotenone-induced neurotoxicity in rat brain areas: a study on neuronal and neuronal supportive cells. Neuroscience 230:172–183

    Article  CAS  PubMed  Google Scholar 

  13. Goswami P, Gupta S, Biswas J, Joshi N, Swarnkar S, Nath C, Singh S (2014) Endoplasmic Reticulum Stress Plays a Key Role in Rotenone-Induced Apoptotic Death of Neurons. Mol Neurobiol [Epub ahead of print].

  14. Xia Q, Feng X, Huang H, Du L, Yang X, Wang K (2011) Gadolinium-induced oxidative stress triggers endoplasmic reticulum stress in rat cortical neurons. J Neurochem 117:38–47

    Article  CAS  PubMed  Google Scholar 

  15. Huang Q, Figueiredo-Pereira ME (2010) Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implication. Apoptosis 15:1292–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakka VP, Gusain A, Raghubir R (2010) Endoplasmic reticulum stress plays critical role in brain damage after cerebral ischemia/reperfusion in rats. Neurotox Res 17:189–202

    Article  PubMed  Google Scholar 

  17. KudoT KS, Hara H, Morimoto N, Morihara T, Kimura R, Tabira T, Imaizumi K, Takeda M (2008) A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ 15:364–375

    Article  Google Scholar 

  18. Prostko CR, Brostrom MA, Brostrom CO (1993) Reversible phosphorylation of eukaryotic initiation factor 2 alpha in response to endoplasmic reticular signaling. Mol Cell Biochem 128:255–265

    Article  Google Scholar 

  19. Ron D (2002) Translational control in the endoplasmic reticulum stress response. J Clin Invest 110:1383–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee WC, Chen YY, Kan D, Chien CL (2012) A neuronal death model: overexpression of neuronal intermediate filament protein peripherin in PC12 cells. J Biomed Sci 17:19–28

    Google Scholar 

  21. Sokka AL, Putkonen N, Mudo G, Pryazhnikov E, Reijonen S, Khiroug L, Belluardo N, Lindholm D et al (2007) Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain. J Neurosci 27:901–908

    Article  CAS  PubMed  Google Scholar 

  22. Lewerenz J, Maher P (2009) Basal levels of eIF2alpha phosphorylation determine cellular antioxidant status by regulating ATF4 and xCT expression. J Biol Chem 284:1106–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kessel D (2006) Protection of Bcl-2 by salubrinal. Biochem Biophys Res Commun 346:1320–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D et al (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939

    Article  CAS  PubMed  Google Scholar 

  25. Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11

    Article  CAS  PubMed  Google Scholar 

  26. Zhang P, Hamamura K, Jiang C, Zhao L, Yokota H (2012) Salubrinal promotes healing of surgical wounds in rat femurs. J Bone Miner Metab 30:568–579

    Article  PubMed  Google Scholar 

  27. Paxinos G, Watson C (1988) The rat brain in stereotaxic coordinates. Academic press, New York, pp 1–120

    Google Scholar 

  28. Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. The disposition of [3H] norepinephrine [3H] dopamine and [3H] DOPA in various regions of the brain. J Neurochem 13:655–670

    Article  CAS  PubMed  Google Scholar 

  29. Sathyasaikumar KV, Swapna I, Reddy PV, Murthy CR, Dutta Gupta A, Senthilkumaran B, Reddanna P (2007) Fulminant hepatic failure in rats induces oxidative stress differentially in cerebral cortex, cerebellum and pons medulla. Neurochem Res 32:517–524

    Article  CAS  PubMed  Google Scholar 

  30. Gupta YK, Sharma M (2003) Effect of alpha lipoic acid on intracerebroventricular streptozotocin model of cognitive impairment in rats. Eur Neuropsychol Pharmacol 13:241–247

    Article  Google Scholar 

  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  32. Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250:5475–5480

    CAS  PubMed  Google Scholar 

  33. Lin AM, Chao PL, Fang SF, Chi CW, Yang CH (2007) Endoplasmic reticulum stress is involved in arsenite-induced oxidative injury in rat brain. Toxicol Appl Pharmacol 224:138–146

    Article  CAS  PubMed  Google Scholar 

  34. Singh S, Kumar S, Dikshit M (2010) Involvement of the mitochondrial apoptotic pathway and nitric oxide synthase in dopaminergic neuronal death induced by 6-hydroxydopamine and lipopolysaccharide. Redox Rep 15:115–122

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Powers C, Jiang N, Chopp M (1998) Intact, injured, necrotic and apoptotic cells after focal cerebral ischemia in the rat. J Neurol Sci 156:119–132

    Article  CAS  PubMed  Google Scholar 

  36. Ohmura A, Nakajima W, Ishida A, Yasuoka N, Kawamura M, Miura S, Takada G (2005) Prolonged hypothermia protects neonatal rat brain against hypoxic-ischemia by reducing both apoptosis and necrosis. Brain Dev 27:517–526

    Article  PubMed  Google Scholar 

  37. Lin L Yang SS, Chu J, Wang L, Ning LN, Zhang T, Jiang Q, Tian Q, Wang JZ (2014) Region-specific expression of tau, amyloid-β protein precursor, and synaptic proteins at physiological condition or under endoplasmic reticulum stress in rats. J Alzheimers Dis [Epub ahead of print].

  38. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103

    Article  CAS  PubMed  Google Scholar 

  39. Cohen G, Heikkila RE (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 249:2447–2452

    CAS  PubMed  Google Scholar 

  40. Arivazhagan P, Shila S, Kumaran S, Panneerselvam C (2002) Effect of DL-alpha lipoic acid on the status of lipid peroxidation and antioxidant enzymes in various brain regions of rats. Exp Gerontol 37:803–811

    Article  CAS  PubMed  Google Scholar 

  41. Vaccaro A, Patten SA, Aggad D, Julien C, Maios C, Kabashi E, Drapeau P, Parker JA (2013) Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiol Dis 55:64–75

    Article  CAS  PubMed  Google Scholar 

  42. Pickel VM, Joh TH, Field PM, Becker CG, Reis DJ (1975) Cellular localization of tyrosine hydroxylase by immunohistochemistry. J Histochem Cytochem 23:1–12

    Article  CAS  PubMed  Google Scholar 

  43. Karuppagounder SS, Madathil SK, Pandey M, Haobam R, Rajamma U, Mohanakumar KP (2013) Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience 236:136–148

    Article  CAS  PubMed  Google Scholar 

  44. Ludvig N, Sheffield LG, Tang HM, Baptiste SL, Devinsky O, Kuzniecky RI (2008) Histological evidence for drug diffusion across the cerebral meninges into the underlying neocortex in rats. Brain Res 1188:228–232

    Article  CAS  PubMed  Google Scholar 

  45. Samantrey S, Knaryan VH, Guyton MK, Matzelle DD, Ray SK, Banik NL (2007) The Parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience 146:741–755

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Department of Biotechnology, India (no. BT/PR4016/MED/30/674/2011) for providing the financial support. Authors are thankful to Dr. D.S. Upadhyay, Head, Division of Laboratory Animals, CSIR-CDRI, and his team for providing animals for study and Ms. Anupma Saxena for her technical help in histological studies. Poonam Goswami gratefully acknowledges the Indian Council of Medical Research (ICMR), India, for senior research fellowship and Academy of Scientific and Innovative Research (AcSIR) for providing opportunity to conduct research at CSIR-CDRI.

Conflict of interest

Authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarika Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(TIFF 991 kb)

ESM 2

(TIFF 1632 kb)

ESM 3

(TIFF 2544 kb)

ESM 4

(TIFF 2586 kb)

ESM 5

(TIFF 2066 kb)

ESM 6

(TIFF 3289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, P., Gupta, S., Biswas, J. et al. Endoplasmic Reticulum Stress Instigates the Rotenone Induced Oxidative Apoptotic Neuronal Death: a Study in Rat Brain. Mol Neurobiol 53, 5384–5400 (2016). https://doi.org/10.1007/s12035-015-9463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9463-0

Keywords

Navigation